11 research outputs found

    Cranial MRI in Childhood Acute Leukemia during Treatment and Follow-Up Including the Impact of Intrathecal MTX : A Single-Center Study and Review of the Literature

    Get PDF
    Due to high survival rates, long-term sequelae, especially neurotoxicity, need to be considered in childhood acute leukemias. In this retrospective analysis of morphologic changes of the brain in children treated for acute leukemias, we included 94 patients (77 ALL, 17 AML; 51 male, 43 female; median age: 5 years) from a single center. We analyzed 170 cranial MRI scans (T2, FLAIR axial) for morphologic alterations of the brain and variations of the ventricular width (GDAH). In addition, the corresponding literature was reviewed. More than 50% of all patients showed cerebral pathomorphologies (CP). They were seen more often in children with ALL (55.8%), ≤ 6 years of age (60.8%), in relapse (58.8%) or after CNS irradiation (75.0%) and included white matter changes, brain atrophy, sinus vein thrombosis and ischemic events. GDAH significantly enlarged mainly in children up to 6 years, with relapse, high-risk leukemias or ALL patients. However, GDAH can normalize again. The number of intrathecal Methotrexate applications (≤12 vs. >12) showed no correlation to morphologic alterations besides a significant increase in GDAH (−0.3 vs. 0.9 mm) between the first and last follow-up MRI in ALL patients receiving >12 ith. MTX applications. The role of ith. MTX on CP needs to be further investigated and correlated to the neurocognitive outcome of children with acute leukemias

    Impact of cannabis use on brain metabolism using 31P and 1H magnetic resonance spectroscopy

    Get PDF
    Purpose This prospective cross-sectional study investigated the infuence of regular cannabis use on brain metabolism in young cannabis users by using combined proton and phosphorus magnetic resonance spectroscopy. Methods The study was performed in 45 young cannabis users aged 18–30, who had been using cannabis on a regular basis over a period of at least 2 years and in 47 age-matched controls. We acquired 31P MRS data in diferent brain regions at 3T with a double-resonant 1H/31P head coil, anatomic images, and 1H MRS data with a standard 20-channel 1H head coil. Absolute concentration values of proton metabolites were obtained via calibration from tissue water as an internal reference, whereas a standard solution of 75 mmol/l KH2PO4 was used as an external reference for the calibration of phosphorus signals. Results We found an overall but not statistically signifcant lower concentration level of several proton and phosphorus metabolites in cannabis users compared to non-users. In particular, energy-related phosphates such as adenosine triphosphate (ATP) and inorganic phosphate (Pi) were reduced in all regions under investigation. Phosphocreatine (PCr) showed lowered values mainly in the left basal ganglia and the left frontal white matter. Conclusion The results suggest that the increased risk of functional brain disorders observed in long-term cannabis users could be caused by an impairment of the energy metabolism of the brain, but this needs to be verifed in future studies

    Configuration of the optic chiasm in humans with albinism as revealed by magnetic resonance imaging

    No full text
    PURPOSE. To determine whether the size and configuration of the optic chiasm in humans with albinism is different from that in normal control subjects. METHODS. Seventeen patients and 15 control subjects underwent magnetic resonance imaging of the entire head. Images were reformatted to the chiasm region and analyzed with observer-independent morphometry and measurements by a blinded observer. RESULTS. The albino group showed significantly smaller chiasmatic widths, smaller optic nerves and tracts, and wider angles between nerves and tracts. Statistical morphometry showed a different configuration of the optic chiasm. CONCLUSIONS. Size and configuration of the optic chiasm in humans with albinism are distinctly different from those in normal control subjects and reflect the atypical crossing of optic fibers. (Invest Ophthalmol Vis Sci. 2003;44:16 -21

    Association of the brain-derived neurotrophic factor val66met polymorphism with magnetic resonance spectroscopic markers in the human hippocampus: in vivo evidence for effects on the glutamate system

    Get PDF
    The brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and has been suggested to be involved in the pathophysiology and pathogenesis of psychotic disorders, with particular emphasis on dysfunctions of the hippocampus. The aim of the present study was to replicate and to extend prior findings of BDNF val66met genotype effects on hippocampal volume and N-acetyl aspartate (NAA) levels. Hundred and fifty-eight caucasians (66 schizophrenic, 45 bipolar, and 47 healthy subjects; 105 subjects underwent MRI and 103 MRS scanning) participated in the study and were genotyped with regard to the val66met polymorphism (rs6265) of the BDNF gene. Hippocampal volumes were determined using structural magnetic resonance imaging (MRI), and measures of biochemical markers were taken using proton magnetic resonance spectroscopy ((1)H-MRS) in the hippocampus and other brain regions. Verbal memory was assessed as a behavioral index of hippocampal function. BDNF genotype did not impact hippocampal volumes. Significant genotype effects were found on metabolic markers specifically in the left hippocampus. In particular, homozygous carriers of the met-allele exhibited significantly lower NAA/Cre and (Glu + Gln)/Cre metabolic ratios compared with val/val homozygotes, independently of psychiatric diagnoses. BDNF genotype had a numerical, but nonsignificant effect on verbal memory performance. These findings provide first in vivo evidence for an effect of the functional BDNF val66met polymorphism on the glutamate system in human hippocampus

    Association of the brain-derived neurotrophic factor val66met polymorphism with magnetic resonance spectroscopic markers in the human hippocampus: in vivo evidence for effects on the glutamate system

    No full text
    The brain-derived neurotrophic factor (BDNF) is a key regulator of synaptic plasticity and has been suggested to be involved in the pathophysiology and pathogenesis of psychotic disorders, with particular emphasis on dysfunctions of the hippocampus. The aim of the present study was to replicate and to extend prior findings of BDNF val66met genotype effects on hippocampal volume and N-acetyl aspartate (NAA) levels. Hundred and fifty-eight caucasians (66 schizophrenic, 45 bipolar, and 47 healthy subjects; 105 subjects underwent MRI and 103 MRS scanning) participated in the study and were genotyped with regard to the val66met polymorphism (rs6265) of the BDNF gene. Hippocampal volumes were determined using structural magnetic resonance imaging (MRI), and measures of biochemical markers were taken using proton magnetic resonance spectroscopy ((1)H-MRS) in the hippocampus and other brain regions. Verbal memory was assessed as a behavioral index of hippocampal function. BDNF genotype did not impact hippocampal volumes. Significant genotype effects were found on metabolic markers specifically in the left hippocampus. In particular, homozygous carriers of the met-allele exhibited significantly lower NAA/Cre and (Glu + Gln)/Cre metabolic ratios compared with val/val homozygotes, independently of psychiatric diagnoses. BDNF genotype had a numerical, but nonsignificant effect on verbal memory performance. These findings provide first in vivo evidence for an effect of the functional BDNF val66met polymorphism on the glutamate system in human hippocampus
    corecore