29 research outputs found

    Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemotherapy (CT) resistance in ovarian cancer (OC) is broad and encompasses diverse unrelated drugs, suggesting more than one mechanism of resistance. To better understand the molecular mechanisms controlling the immediate response of OC cells to CT exposure, we have performed gene expression profiling in spheroid cultures derived from six OC cell lines (OVCAR3, SKOV3, TOV-112, TOV-21, OV-90 and TOV-155), following treatment with 10,0 ÎŒM cisplatin, 2,5 ÎŒM paclitaxel or 5,0 ÎŒM topotecan for 72 hours.</p> <p>Results</p> <p>Exposure of OC spheroids to these CT drugs resulted in differential expression of genes associated with cell growth and proliferation, cellular assembly and organization, cell death, cell cycle control and cell signaling. Genes, functionally involved in DNA repair, DNA replication and cell cycle arrest were mostly overexpressed, while genes implicated in metabolism (especially lipid metabolism), signal transduction, immune and inflammatory response, transport, transcription regulation and protein biosynthesis, were commonly suppressed following all treatments. Cisplatin and topotecan treatments triggered similar alterations in gene and pathway expression patterns, while paclitaxel action was mainly associated with induction of genes and pathways linked to cellular assembly and organization (including numerous tubulin genes), cell death and protein synthesis. The microarray data were further confirmed by pathway and network analyses.</p> <p>Conclusion</p> <p>Most alterations in gene expression were directly related to mechanisms of the cytotoxics actions in OC spheroids. However, the induction of genes linked to mechanisms of DNA replication and repair in cisplatin- and topotecan-treated OC spheroids could be associated with immediate adaptive response to treatment. Similarly, overexpression of different tubulin genes upon exposure to paclitaxel could represent an early compensatory effect to this drug action. Finally, multicellular growth conditions that are known to alter gene expression (including cell adhesion and cytoskeleton organization), could substantially contribute in reducing the initial effectiveness of CT drugs in OC spheroids. Results described in this study underscore the potential of the microarray technology for unraveling the complex mechanisms of CT drugs actions in OC spheroids and early cellular response to treatment.</p

    Molecular determinants of LPS-induced acute renal inflammation: Implication of the kinin B1 receptor.

    No full text
    International audienceAcute renal inflammation represents a complex disease and its molecular basis remains incompletely defined. We examined changes of global renal gene expression in lipopolysacharide-treated wild-type and kinin B(1) receptor-knockout mice to better comprehend molecular mechanisms of acute renal inflammation and possible implications of the kinin B(1) receptor in early (inflammatory) stages of renal disease. Microarray data revealed that LPS-mediated renal inflammation is associated with strong induction of gene families that are mostly involved in inflammatory and immune response and cell adhesion, as well as genes associated with metabolism, signal transduction and transport. Downregulated by the LPS challenge were genes and pathways that are necessary for normal renal function, including those implicated in metabolism, transport, protein biosynthesis and, cytoskeleton organization, regulation of transcription and signal transduction. Moreover, we show that B(1) receptor ablation could be protective against inflammation-related kidney injuries

    Gene expression profiling in the remnant kidney model of wild type and kinin B1 and B2 receptor knockout mice.

    Get PDF
    International audienceAngiotensin-converting enzyme inhibitors are the most efficient pharmacologic agents to delay the development of end-stage renal disease (ESRD). This is a multipharmacologic approach that inhibits angiotensin II formation while increasing kinin concentrations. Considerable attention has been focused on the role of decreased angiotensin II levels; however, the role of increased kinin levels is gaining in interest. Kinins affect cellular physiology by interacting with one of two receptors being the more inducible B1 and the more constitutive B2 receptors. This study utilizes the mouse remnant kidney of 20 weeks duration as a model of ESRD. Whole mouse genome microarrays were used to evaluate gene expression in the remnant kidneys of wild type, B1 and B2 receptor knockout animals. The microarray data indicate that gene families involved in vascular damage, inflammation, fibrosis, and proteinuria were upregulated, whereas gene families involved in cell growth, metabolism, lipid, and protein biosynthesis were downregulated in the remnant kidneys. Interestingly, the microarray analyses coupled to histological evaluations are suggestive of a possible protective role of kinins operating through the B2 receptor subtype in this model of renal disease. The results highlight the potential of microarray technology for unraveling complex mechanisms contributing to chronic renal failure

    The polypeptide GALNT6 Displays Redundant Functions upon Suppression of its Closest Homolog GALNT3 in Mediating Aberrant O-Glycosylation, Associated with Ovarian Cancer Progression

    No full text
    Epithelial ovarian cancer (EOC) represents the most lethal gynecologic malignancy; a better understanding of the molecular mechanisms associated with EOC etiology could substantially improve EOC management. Aberrant O-glycosylation in cancer is attributed to alteration of N-acetylgalactosaminyltransferases (GalNAc-Ts). Reports suggest a genetic and functional redundancy between GalNAc-Ts, and our previous data are indicative of an induction of GALNT6 expression upon GALNT3 suppression in EOC cells. We performed single GALNT3 and double GALNT3/T6 suppression in EOC cells, using a combination of the CRISPR-Cas9 system and shRNA-mediated gene silencing. The effect of single GALNT3 and double GALNT3/T6 inhibition was monitored both in vitro (on EOC cells roliferation, migration, and invasion) and in vivo (on tumor formation and survival of experimental animals). We confirmed that GALNT3 gene ablation leads to strong and rather compensatory GALNT6 upregulation in EOC cells. Moreover, double GALNT3/T6 suppression was significantly associated with stronger inhibitory effects on EOC cell proliferation, migration, and invasion, and accordingly displayed a significant increase in animal survival rates compared with GALNT3-ablated and control (Ctrl) EOC cells. Our data suggest a possible functional redundancy of GalNAc-Ts (GALNT3 and T6) in EOC, with the perspective of using both these enzymes as novel EOC biomarkers and/or therapeutic targets

    Strong cytotoxic effect of the bradykinin antagonist BKM-570 in ovarian cancer cells--analysis of the molecular mechanisms of its antiproliferative action.

    No full text
    International audienceThe standard chemotherapy for epithelial ovarian cancer (EOC) patients is currently a combination of taxane and platinum. However, most EOC patients still suffer relapses, and there is an immediate need for the development of novel and more effective therapeutic modalities against this deadly disease. Recently, the nonpeptide bradykinin (BK) antagonist 2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-l-tyrosine-N-(4-amino-2,2,6,6-tetramethyl-piperidyl) amide (BKM-570) was shown to cause impressive growth inhibition of lung and prostate tumors, displaying superior in vivo inhibitory effects than convential chemotherapeutic drugs. Here, we investigated BKM-570 cytotoxic effects in two EOC cell lines, derived from different EOC histopathologies: a clear cell carcinoma (TOV-21), and an endometrioid carcinoma (TOV-112). We showed that BKM-570 effectively inhibited the growth of ovarian cancer cells, as its cytotoxic effects were comparable to those of cisplatin, and were independent of the functional status of BK receptors. Moreover, BKM-570 synergized with cisplatin in inhibiting EOC cell growth. To better understand the molecular mechanisms of the antiproliferative action of this BK antagonist in EOC cells, we performed gene expression profiling in TOV-21 and TOV-112 cells following treatment with 10 ÎŒM BKM-570 for 24 h. BKM-570 displayed similar cytotoxic effects in the two cell lines analyzed, as genes with previously shown involvement in apoptosis/antiapoptosis and cell adhesion were proportionally upregulated and downregulated in both cell lines, whereas genes involved in basic cellular mechanisms, including cell growth and maintenance, metabolism, cell cycle control, inflammatory and immune response, signal transduction, protein biosynthesis, transcription regulation, and transport, were predominantly downregulated upon treatment. Our data are indicative of the therapeutic potential of BKM-570 and related compounds in EOC management

    Functional analysis for a dataset of differentially expressed genes (≄1

    No full text
    5 fold) in OC spheroids following CT drugs treatments. A. Functional analysis following all drugs (cisplatin, topotecan and paclitaxel) treatment, B. Functional analysis following cisplatin treatment. Top functions that meet a -value cutoff of 0.05 are displayed.<p><b>Copyright information:</b></p><p>Taken from "Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids"</p><p>http://www.biomedcentral.com/1471-2164/9/99</p><p>BMC Genomics 2008;9():99-99.</p><p>Published online 26 Feb 2008</p><p>PMCID:PMC2279123.</p><p></p

    Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids-2

    No full text
    Tering of OC spheroids following treatment with all used drugs (cisplatin, topotecan and paclitaxel (taxol)), that discriminates between compact spheroids and aggregates. A subset of candidate genes were initially obtained by filtering on signal intensity (2-fold), retaining 527 genes. One-way ANOVA parametric test (Welch -test, variances not assumed equal, ≀ 0.03) further selected 85 genes. Clustering analysis based on the 85 gene list was performed using the standard Condition Tree algorithm provided in GeneSpring. The mean appears , whereas signifies up-regulation, and signifies down-regulation (see legend bar). Compact spheroids are indicated in , aggregates are indicated in . Each cell line is indicated with different color.<p><b>Copyright information:</b></p><p>Taken from "Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids"</p><p>http://www.biomedcentral.com/1471-2164/9/99</p><p>BMC Genomics 2008;9():99-99.</p><p>Published online 26 Feb 2008</p><p>PMCID:PMC2279123.</p><p></p
    corecore