86 research outputs found

    Sending Granny to Chiang Mai: debating global outsourcing of care for the elderly

    Full text link
    This article ties in with existing discussions on global care chains, family separation and the devaluation of social-reproductive work. We explore the new trend of outsourcing care for the elderly to countries with lower wages. We base our analysis on the debate in the German press and supplement it with insights from ethnographic field observations in two care homes in Thailand. We identify a discourse of abandonment, which shows how outsourcing the care of the elderly unsettles the privilege of sedentarism that is often taken for granted in the Global North. Furthermore, the newspaper articles tend to villainize people who seek care for their loved ones abroad. We argue that both discourses foster a neoliberal rationale of individualized responsibility and obfuscate the deep systemic roots of the care crisis in the Global North. However, by extending the discussion on outsourcing care for the elderly beyond the dominant media discourses, we envisage a rich potential for provoking political debate on the revaluation of care

    A framework for developing an evidence-based, comprehensive tobacco control program

    Get PDF
    BACKGROUND: Tobacco control is an area where the translation of evidence into policy would seem to be straightforward, given the wealth of epidemiological, behavioural and other types of research available. Yet, even here challenges exist. These include information overload, concealment of key (industry-funded) evidence, contextualization, assessment of population impact, and the changing nature of the threat. METHODS: In the context of Israel's health targeting initiative, Healthy Israel 2020, we describe the steps taken to develop a comprehensive tobacco control strategy. We elaborate on the following: a) scientific issues influencing the choice of tobacco control strategies; b) organization of existing evidence of effectiveness of interventions into a manageable form, and c) consideration of relevant philosophical and political issues. We propose a framework for developing a plan and illustrate this process with a case study in Israel. RESULTS: Broad consensus exists regarding the effectiveness of most interventions, but current recommendations differ in the emphasis they place on different strategies. Scientific challenges include integration of complex and sometimes conflicting information from authoritative sources, and lack of estimates of population impact of interventions. Philosophical and political challenges include the use of evidence-based versus innovative policymaking, the importance of individual versus governmental responsibility, and whether and how interventions should be prioritized.The proposed framework includes: 1) compilation of a list of potential interventions 2) modification of that list based on local needs and political constraints; 3) streamlining the list by categorizing interventions into broad groupings of related interventions; together these groupings form the basis of a comprehensive plan; and 4) refinement of the plan by comparing it to existing comprehensive plans. CONCLUSIONS: Development of a comprehensive tobacco control plan is a complex endeavour, involving crucial decisions regarding intervention components. "Off the shelf" plans, which need to be adapted to local settings, are available from a variety of sources, and a multitude of individual recommendations are available. The proposed framework for adapting existing approaches to the local social and political climate may assist others planning for smoke-free societies. Additionally, this experience has implications for development of evidence-based health plans addressing other risk factors

    Procollagen Triple Helix Assembly: An Unconventional Chaperone-Assisted Folding Paradigm

    Get PDF
    Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30–34°C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50–200 µM concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization

    Determination of a high-precision NMR structure of the minicollagen cysteine rich domain from Hydra and characterization of its disulfide bond formation

    Get PDF
    A high-precision solution structure of the C-terminal minicollagen cysteine rich domain of Hydra has been determined using modern heteronuclear and weak alignment NMR techniques at natural isotope abundance. The domain consists of only 24 amino acids, six of which are prolines and six are cysteines bonded in disulfide bridges that constrain the structure into a new fold. The redox equilibrium of the structure has been characterized from a titration with glutathione. No local native structures are detectable in the reduced form. Thus, oxidation and folding are tightly coupled

    Collagen triple-helix formation in all-trans chains proceeds by a nucleation/growth mechanism with a purely entropic barrier

    No full text
    Collagen consists of repetitive Gly–Xaa–Yaa tripeptide units with proline and hydroxyproline frequently found in the Xaa and Yaa position, respectively. This sequence motif allows the formation of a highly regular triple helix that is stabilized by steric (entropic) restrictions in the constituent polyproline-II-helices and backbone hydrogen bonds between the three strands. Concentration-dependent association reactions and slow prolyl isomerization steps have been identified as major rate-limiting processes during collagen folding. To gain information on the dynamics of triple-helix formation in the absence of these slow reactions, we performed stopped-flow double-jump experiments on cross-linked fragments derived from human type III collagen. This technique allowed us to measure concentration-independent folding kinetics starting from unfolded chains with all peptide bonds in the trans conformation. The results show that triple-helix formation occurs with a rate constant of 113 ± 20 s(–1) at 3.7°C and is virtually independent of temperature, indicating a purely entropic barrier. Comparison of the effect of guanidinium chloride on folding kinetics and stability reveals that the rate-limiting step is represented by bringing 10 consecutive tripeptide units (3.3 per strand) into a triple-helical conformation. The following addition of tripeptide units occurs on a much faster time scale and cannot be observed experimentally. These results support an entropy-controlled zipper-like nucleation/growth mechanism for collagen triple-helix formation

    Sequence-structure and structure-function analysis in cysteine-rich domains forming the ultrastable nematocyst wall

    No full text
    The nematocyst wall of cnidarians is a unique biomaterial that withstands extreme osmotic pressures, allowing an ultrafast discharge of the nematocyst capsules. Assembly of the highly robust nematocyst wall is achieved by covalent linkage of cysteine-rich domains (CRDs) from two main protein components, minicollagens and nematocyst outer wall antigen (NOWA). The bipolar minicollagens have different disulfide patterns and topologies in their N and C-terminal CRDs. The functional significance of this polarity has been elusive. Here, we show by NMR structural analysis that all representative cysteine-rich domains of NOWA are structurally related to N-terminal minicollagen domains. Natural sequence insertions in NOWA CRDs have very little effect on the tightly knit domain structures, nor do they preclude the efficient folding to a single native conformation. The different folds in NOWA CRDs and the atypical C-terminal minicollagen domain on the other hand can be directly related to different conformational preferences in the reduced states. Ultrastructural analysis in conjunction with aggregation studies argues for an association between the similar NOWA and N-terminal minicollagen domains in early stages of the nematocyst wall assembly, which is followed by the controlled association between the unusual structures of C-terminal minicollagen domains
    • …
    corecore