35 research outputs found

    Standards of genetic testing in the diagnosis and prognostication of systemic mastocytosis in 2022: Recommendations of the EU-US cooperative group

    Get PDF
    Mastocytosis comprises rare heterogeneous diseases characterized by an increased accumulation of abnormal mast cells in various organs/tissues. The pathogenesis of mastocytosis is strongly linked to the presence of KIT-activating mutations. In systemic mastocytosis (SM), the most frequent mutation encountered is KIT p.D816V, whose presence constitutes one of the minor diagnostic criteria. Different techniques are used to search and quantify the KIT p.D816V mutant; however, allele-specific quantitative PCR and droplet digital PCR are today the most sensitive. The analysis of the KIT p.D816V allele burden has undeniable interest for diagnostic, prognostic, and therapeutic monitoring. The analysis of non–mast cell hematological compartments in SM is similarly important because KIT p.D816V multilineage involvement is associated with a worse prognosis. In addition, in advanced forms of SM, mutations in genes other than KIT are frequently identified and affect negatively disease outcome and response to therapy. Thus, combined quantitative and sensitive analysis of KIT mutations and next-generation sequencing of other recurrently involved myeloid genes make it possible to better characterize the extent of the affected cellular compartments and additional molecular aberrations, providing a more detailed overview of the complex mutational landscape of SM, in relation with the clinical heterogeneity of the disease. In this article, we report the latest recommendations of the EU-US Cooperative Group presented in September 2020 in Vienna during an international working conference, on the techniques we consider standard to detect and quantify the KIT p.D816V mutant in SM and additional myeloid mutations found in SM subtypes.D.D.M., J.J.L., and M.C.C. were supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health. P.V. was supported by the Austrian Science Fund (FWF) (grant nos. F4704-B20 and P32470-B)

    Explicit formula and meromorphic extension of the resolvent for the massive Dirac operator in the Schwarzschild-anti-de Sitter spacetime

    No full text
    We study the resolvent of the massive Dirac operator in the Schwarzschild-anti-de Sitter space-time. After separation of variables, we use standard one-dimensional techniques to obtain an explicit formula. We then make use of this formula to extend the resolvent meromorphically across the real axis. Published by AIP Publishing

    Proof of concept and development of a couple-based machine learning model to stratify infertile patients with idiopathic infertility

    No full text
    International audienceWe aimed to develop and evaluate a machine learning model that can stratify infertile/fertile couples on the basis of their bioclinical signature helping the management of couples with unexplained infertility. Fertile and infertile couples were recruited in the ALIFERT cross-sectional case–control multicentric study between September 2009 and December 2013 (NCT01093378). The study group consisted of 97 infertile couples presenting a primary idiopathic infertility (> 12 months) from 4 French infertility centers compared with 100 fertile couples (with a spontaneously conceived child (< 2 years of age) and with time to pregnancy < 12 months) recruited from the healthy population of the areas around the infertility centers. The study group is comprised of 2 independent sets: a development set (n = 136 from 3 centers) serving to train the model and a test set (n = 61 from 1 center) used to provide an unbiased validation of the model. Our results have shown that: (i) a couple-modeling approach was more discriminant than models in which men’s and women’s parameters are considered separately; (ii) the most discriminating variables were anthropometric, or related to the metabolic and oxidative status; (iii) a refined model capable to stratify fertile vs. infertile couples with accuracy 73.8% was proposed after the variables selection (from 80 to 13). These influential factors (anthropometric, antioxidative, and metabolic signatures) are all modifiable by the couple lifestyle. The model proposed takes place in the management of couples with idiopathic infertility, for whom the decision-making tools are scarce. Prospective interventional studies are now needed to validate the model clinical use
    corecore