8,215 research outputs found

    Equations for determining aircraft motions for accident data

    Get PDF
    Procedures for determining a comprehensive accident scenario from a limited data set are reported. The analysis techniques accept and process data from either an Air Traffic Control radar tracking system or a foil flight data recorder. Local meteorological information at the time of the accident and aircraft performance data are also utilized. Equations for the desired aircraft motions and forces are given in terms of elements of the measurement set and certain of their time derivatives. The principal assumption made is that aircraft side force and side-slip angle are negligible. An estimation procedure is outlined for use with each data source. For the foil case, a discussion of exploiting measurement redundancy is given. Since either formulation requires estimates of measurement time derivatives, an algorithm for least squares smoothing is provided

    Analysis of severe atmospheric disturbances from airline flight records

    Get PDF
    Advanced methods were developed to determine time varying winds and turbulence from digital flight data recorders carried aboard modern airliners. Analysis of several cases involving severe clear air turbulence encounters at cruise altitudes has shown that the aircraft encountered vortex arrays generated by destabilized wind shear layers above mountains or thunderstorms. A model was developed to identify the strength, size, and spacing of vortex arrays. This model is used to study the effects of severe wind hazards on operational safety for different types of aircraft. The study demonstrates that small remotely piloted vehicles and executive aircraft exhibit more violent behavior than do large airliners during encounters with high-altitude vortices. Analysis of digital flight data from the accident at Dallas/Ft. Worth in 1985 indicates that the aircraft encountered a microburst with rapidly changing winds embedded in a strong outflow near the ground. A multiple-vortex-ring model was developed to represent the microburst wind pattern. This model can be used in flight simulators to better understand the control problems in severe microburst encounters

    Tunneling magnetoresistance in devices based on epitaxial NiMnSb with uniaxial anisotropy

    Full text link
    We demonstrate tunnel magnetoresistance (TMR) junctions based on a tri layer system consisting of an epitaxial NiMnSb, aluminum oxide and CoFe tri layer. The junctions show a tunnelling magnetoresistance of Delta R/R of 8.7% at room temperature which increases to 14.7% at 4.2K. The layers show clear separate switching and a small ferromagnetic coupling. A uniaxial in plane anisotropy in the NiMnSb layer leads to different switching characteristics depending on the direction in which the magnetic field is applied, an effect which can be used for sensor applications.Comment: 8 pages, 3 figures, submitted to Appl. Phys. Let

    Chrysomelid Beetle Movements in Relation to Host‐Plant Size and Surrounding Non‐Host Vegetation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/119083/1/ecy19897061679.pd

    Blade loss transient dynamics analysis, volume 1. Task 1: Survey and perspective

    Get PDF
    An analytical technique was developed to predict the behavior of a rotor system subjected to sudden unbalance. The technique is implemented in the Turbine Engine Transient Rotor Analysis (TETRA) computer program using the component element method. The analysis was particularly aimed toward blade-loss phenomena in gas turbine engines. A dual-rotor, casing, and pylon structure can be modeled by the computer program. Blade tip rubs, Coriolis forces, and mechanical clearances are included. The analytical system was verified by modeling and simulating actual test conditions for a rig test as well as a full-engine, blade-release demonstration

    Reliable solid-state circuits Semiannual report no. 2, Jun. 1 - Nov. 30, 1965

    Get PDF
    Pulse width modulator and other microminiaturized electronic equipment for space age application

    Blade loss transient dynamics analysis, volume 2. Task 2: Theoretical and analytical development. Task 3: Experimental verification

    Get PDF
    The component element method was used to develop a transient dynamic analysis computer program which is essentially based on modal synthesis combined with a central, finite difference, numerical integration scheme. The methodology leads to a modular or building-block technique that is amenable to computer programming. To verify the analytical method, turbine engine transient response analysis (TETRA), was applied to two blade-out test vehicles that had been previously instrumented and tested. Comparison of the time dependent test data with those predicted by TETRA led to recommendations for refinement or extension of the analytical method to improve its accuracy and overcome its shortcomings. The development of working equations, their discretization, numerical solution scheme, the modular concept of engine modelling, the program logical structure and some illustrated results are discussed. The blade-loss test vehicles (rig full engine), the type of measured data, and the engine structural model are described

    Ground State and Resonances in the Standard Model of Non-relativistic QED

    Full text link
    We prove existence of a ground state and resonances in the standard model of the non-relativistic quantum electro-dynamics (QED). To this end we introduce a new canonical transformation of QED Hamiltonians and use the spectral renormalization group technique with a new choice of Banach spaces.Comment: 50 pages change

    Phase diagrams of the 2D t-t'-U Hubbard model from an extended mean field method

    Full text link
    It is well-known from unrestricted Hartree-Fock computations that the 2D Hubbard model does not have homogeneous mean field states in significant regions of parameter space away from half filling. This is incompatible with standard mean field theory. We present a simple extension of the mean field method that avoids this problem. As in standard mean field theory, we restrict Hartree-Fock theory to simple translation invariant states describing antiferromagnetism (AF), ferromagnetism (F) and paramagnetism (P), but we use an improved method to implement the doping constraint allowing us to detect when a phase separated state is energetically preferred, e.g. AF and F coexisting at the same time. We find that such mixed phases occur in significant parts of the phase diagrams, making them much richer than the ones from standard mean field theory. Our results for the 2D t-t'-U Hubbard model demonstrate the importance of band structure effects.Comment: 6 pages, 5 figure

    On Blowup for time-dependent generalized Hartree-Fock equations

    Full text link
    We prove finite-time blowup for spherically symmetric and negative energy solutions of Hartree-Fock and Hartree-Fock-Bogoliubov type equations, which describe the evolution of attractive fermionic systems (e. g. white dwarfs). Our main results are twofold: First, we extend the recent blowup result of [Hainzl and Schlein, Comm. Math. Phys. \textbf{287} (2009), 705--714] to Hartree-Fock equations with infinite rank solutions and a general class of Newtonian type interactions. Second, we show the existence of finite-time blowup for spherically symmetric solutions of a Hartree-Fock-Bogoliubov model, where an angular momentum cutoff is introduced. We also explain the key difficulties encountered in the full Hartree-Fock-Bogoliubov theory.Comment: 24 page
    corecore