(NASA-TM-78609) ROUATIONS FOR DETERMINING
 N80-25306 aIbcraft motions for accident data (nasa)
 24 P HC AO2/MF A01
 cscl 01 C

Ralph E. Bach, Jr., and Rodney C. Wingrove

Equations for Determining Aircraft Motions from Accident Data

Ralph E. Bach, Jr.
Rodney C. Wingrove, Ames Research Center, Moffett Field, California

N/S^

Amos Research Center

SYMBOLS

error in estimate of $a_{z w}, m / a^{2}$
accelerometer measurements in $F_{B}, m / s^{2}$
aerodynamic reaction components in F_{W} (including thrust), $\mathrm{m} / \mathrm{s}^{2}$
vector in F_{B}
derivatives of lift and normal-force coefficients with respect to α
reference frames: body fixed, earth fixed, vehicle-carried vertical, air trajectory (wind)
specific force of gravity, m / s^{2}
altitude (-2), m
transformation matrices for rotations $\left(\psi_{b}, \theta_{b}, \phi_{b}\right)$, $\left(\psi_{W}, \theta_{w}, \phi_{W}\right),(0,-\alpha, \beta)$
matrices for single-axis rotations
ifth element of $L_{V B}=L_{B V}^{T}$
mass, kg
body-axis angular velocities, r/s
wind-axis angular velocities, r/s
dynamic pressure, n / m^{2}
reference area, m^{2}
true airspeed, m / s
vector $\ln \mathrm{F}_{\mathrm{W}}$
wind velocities in F_{E}, m / s
positions in F_{E} : north, east, down, m
angle of attack, rad
sideslip angle, rad

$$
\begin{aligned}
& \phi_{b} \cdot \theta_{b}, \psi_{b} \\
& \text { 中a } \\
& \phi_{w}, 0_{w}, \psi_{w} \\
& \rho \\
& O_{B}, O_{E}, O_{V}, O_{W} \\
& \text { body nxta Euler angles, rad } \\
& \text { arror in catimato of } \phi_{W} \text {, rad } \\
& \text { wind-axis Eulor angloa, rad } \\
& \text { denaity of atmosphore, } \mathrm{kg} / \mathrm{m}^{3} \\
& \text { origins of reference frames } F_{B}, F_{E}, F_{V}, F_{W}
\end{aligned}
$$

EqUATIONS FOR DETERMINTNG AIRCRAPT MOTIONS FROM ACctDENT DATA

Ralph E. Bach, Jr., and Rodnoy C. Wiagrovo

Ames Reacarch Center

SUMMARY

Thls paper describes procedures for determining a comprehensivo aceident scenario from a limited data sot. The analysis techniquas accept and process data from aither of two sources: an Air Traffic Control (ATC) radar-tracking system or a foil flight-data recorder. Local meteorological information at the time of the aceldent and aircraft performance data are also utilized.

Equations for the desired aircraft motions (roll, pitch, yaw) and forces (1ift, excess thrust) are given in terms of elements of the measurement set and certain of their time derivatives. The principal assumption made in the development presented here is that aircraft side force and sideslip angle are negligible.

An estimation procedure is outlined for use with each data source, For the foil case, a discussion of exploiting measurement redundancy is given. Since either formulation requires estimates of measurement time derivatives, an algorithm for least-gquares smouthing is provided

INTRODUCTION

For several years Ames Research Center has been assisting the National Transportation Safety Board (NTSB) and the military services in their investigations of aircraft aceidents. During this period, methods have been developed to determine aireraft motions from the limited data available following an accident. It is the purpose of this report to derive the equations used in the analysis of such data and to summarize their application. A companion paper (ref. 1) presents an experimental assessment of the accuracy of the methods and results from several aceldent analyses. To the authors' knowledge, these are the first expositions of accident analysis techniques based on the full aircraft kinematic model that have appeared in the open literature.

The data sources considered here are the ground-based radar tracking syatem and the unbuard foil flight recorder. A radar tracking system provides time historles of aireraft position, including altitude (when the vehtele is equipped with an altitude transponder). Radar data are recorded by an Air Traffic Control (ATC) station in the vicinity of the aceldent site (rui. 2). A fotl record contains time histories of indicated airspeed, magnetic hoading, barometric altitude, and nornal acceloration. F1lght recorders of the metalfoil type are carrled by many airliners and some miltary alreraft. They are of rugged construction, designed to withatand the fgors of sevore acchents (refs 3 and 4).

By 1974. NTSB acientista had developed digital computer programe for analysis of both ATC radar data and foil records. These programe corrected the data for calibration arrora and nonstandard atmospharic conditions and provided time-history astimates of such parameters as groundspeed and groundtrack and flightpath angles (ref. 5). The NASA contribution has been to show how either data source, in combination with meteorological and aircraft data, can be utilized to estimate wind-axis specific forces (exeess thrust, ifft) and body-axis Euler angles (roll, pitch, yaw). Thrust and lift forces are important aircraft performance parameters (raf, 6), which, along with the Euler angle time histories, are valuable aids to the investigator in visualizing an accident trajectory.

This report is organized as follows: 1) wind-axis force and angle relam. tions are derived for a vehicle governed by basic rigid-body dynamics, referred to a flat, nomrotating earth; 2) then, formulus for expressing bodyaxis Euler angles in terms- of wind-axis angles and the aerodynamic angles arepresented; 3) the specialized applications of the equations to the analysis of either radar or foil data are then summarized; pertinent axis systems and transformations are defined in Appendix A; and finally, since both analyses depend on estimates of first and second derivatives of certain measurement time histories, an algorithm for least-squares smoothing is presented in Appendix B.

FORCE AND_ATTITUDE-EQUATIONS

The key steps in processing accident data from ATC stations or foll recorders are indicated in figure 1. Smoothing the data provides estimates of first and second time derivatives from-which wind-axis forces and angles can be determined. The forces, airspeed, and specific information about the airplane (lift characteristics) permit estimating the angle of attack, which can then be used with the wind-axis angles to determine time histories of the body-axis Euler angles. The assumption of negilgible side force ($\mathrm{a}_{\mathrm{yw}}=0$) and sideslip angle ($\beta=0$) is necessary to obtain the desired solutions. There may be, of course, accident situations in which this assumption is not valid. In the following paragraphs, we derive the equations for force and attitude estimation. The vehicle dynamics introduced here are discussed in reference 7.

Wind-Axis Forces and Angles

It is convenient first to develop expressions for wind-axis angles and forces in terms of quantities derived from vehicle position derivatives and local wind estimates. The rationale for this approach should become evident as the development proceeds. Orientation of the wind-axis frame F_{W}, relative to the vehicle-carried vertical frame F_{V}, is defined by Euler angles (ψ_{w}, θ_{w}, ϕ_{W}). As described in Appendix A, both F_{W} and FV have their origins at the vehicle mass center and move with 1t. Frame F_{W} has axis $0 x_{W}$ along the velocity vector and axis $0 z_{W}$ in the vehicle plane of symmetry. The axes of

Figure 1. Flow chart for processing accident data to obtain windaxis forces and body-axis Euler angles.

FV are paralici to the stationary earth-aurface frame FE_{E}. In thia development we asaume that the earth'a curvature and rotation relative to an inertial frame can be neglected. Definitione of the Eular-anglea and a roview of important axis transformations can also be found in Appendix A.

Expreseions for wind-axis angles ψ_{w} and θ_{w} ard easily derivod from the relationship betwoon vohicie volocity in F_{E} and FW , given by

$$
\left[\begin{array}{ll}
\dot{x} & -w_{x} \tag{1}\\
\dot{y} & -w_{y} \\
\dot{z} & -w_{z}
\end{array}\right]=L_{V W}\left[\begin{array}{l}
V \\
0 \\
0
\end{array}\right]=\left[\begin{array}{lll}
V & \cos \theta_{w} & \cos \psi_{w} \\
V & \cos \theta_{w} & \sin \psi_{w} \\
-V & \sin \theta_{w}
\end{array}\right]
$$

where ($\dot{x}, \dot{y}, \dot{z}$) are time derivatives of vehicle fusition in E_{E}, (W_{x}, w_{y}, w_{z}) are winds in E_{E}, and V is true airspeed. It should be noted that, along a space irajectory, winds would be ideally characterized..as functions of time and position, $1 . e_{0}, w_{x}=w_{x}(t, x, y, z) ; w_{y}=w_{y}\left(t, x, y, z ; ; w_{z}=w_{z}(t, x, y, z)\right.$. When the second equation of (1) is divided by the first, it is seen that

$$
\begin{equation*}
\tan \psi_{w}=\left(\dot{y}-w_{y}\right) /\left(\dot{x}-w_{x}\right) \tag{2}
\end{equation*}
$$

while the third equation yields

$$
\begin{equation*}
\sin \theta_{w}=-\left(\dot{z}-w_{Z}\right) / V \tag{3}
\end{equation*}
$$

Note that the airspeed can be written as

$$
\begin{equation*}
V=\left[\left(\dot{x}-w_{x}\right)^{2}+\left(\dot{y}-w_{y}\right)^{2}+\left(\dot{z}-w_{z}\right)^{2}\right]^{1 / 2} \tag{4}
\end{equation*}
$$

which is obtained by premultiplying the vector in equation (1) by its transpose.

The relationship for vehicle aerodynamic reaction in temis of the acceleration of its center of mass and its gravitational attraction is used to complete the wind-axis Euler angle set and determine the forces. Hence,

$$
\left[\begin{array}{l}
a_{x w} \tag{5}\\
a_{y w} \\
a_{z W}
\end{array}\right]=a_{c W}-L_{W V}\left[\begin{array}{l}
0 \\
0 \\
g
\end{array}\right]
$$

Aerodynamic reaction as defined in reference 7 is

$$
\left[\begin{array}{l}
a_{x w} \tag{6}\\
a_{y w} \\
a_{z w}
\end{array}\right]=\left[\begin{array}{l}
T_{x w}-D \\
T_{y w}-C \\
T_{z w}-L
\end{array}\right] / m
$$

where ($\mathrm{T}_{\mathrm{xw}}, \mathrm{T}_{\mathrm{yw}}, \mathrm{T}_{\mathrm{zw}}$) are thrust terms; D is drag; C is side force; L is lift; and m is vehicle mass. For an alrcraft in cruising flight, only $T_{x w}, D$, and L are significant forces. Often, $a_{x w}$ is referred to as "exceas thrust." The acceleration of the vehicle center of mass can be written

$$
a_{c w}=\left[\begin{array}{c}
\dot{v} \tag{7}\\
r_{w} v \\
-q_{w} v
\end{array}\right]+l_{w v}\left[\begin{array}{c}
\dot{w}_{x} \\
\dot{w}_{y} \\
\dot{w}_{z}
\end{array}\right]
$$

where \dot{v} and ($\dot{x}_{x}, \dot{H}_{y}, \dot{w}_{g}$) are time derivatives of airapeed and winds. Tho angular velocitios \mathfrak{q}_{w} and \mathfrak{r}_{w} are given by

$$
\left.\begin{array}{l}
q_{w}=-\dot{\theta}_{w} \sin \phi_{w}+\dot{\psi}_{w} \cos \theta_{w} \cos \phi_{w} \tag{8}\\
r_{w}=\dot{\theta}_{w} \cos \phi_{w}+\psi_{w} \cos \theta_{w} \theta \sin \phi_{w}
\end{array}\right\}
$$

Note that expressions for the derivatives $\dot{\psi}_{w}, \dot{\theta}_{w}, \dot{v}$ can be obtalned by differentiating equations (2) through (4), which yfelde

$$
\begin{align*}
& \dot{\psi}_{w}=\left[\left(\ddot{y}-\dot{w}_{y}\right) \cos \psi_{w}-\left(\ddot{x}-\dot{w}_{x}\right) \sin \psi_{w}\right] / V \cos \theta_{w} \tag{9}\\
& \dot{\theta}_{w}=-\left(\ddot{z}-\dot{w}_{z}+\dot{v}_{\theta} \sin \theta_{w}\right) / V \cos \theta_{w} \tag{10}\\
& \dot{v}=\left[\left(\ddot{x}-\dot{w}_{x}\right) \cos \psi_{w}+\left(\ddot{y}-\dot{w}_{y}\right) \sin \psi_{w}\right] \cos \theta_{w}-\left(z-\dot{w}_{z}\right) \sin \theta_{w} \tag{11}
\end{align*}
$$

where ($\ddot{x}, \ddot{y}, \ddot{z}$) are second time derivatives of vehicle pesition in F_{E}.
We now multiply both sides of equation (5) by $\mathrm{L}_{\mathrm{X}}\left(-\phi_{\mathrm{W}}\right)$ and use equations (7), (8), and (10) to obtain

$$
\begin{equation*}
a_{x w}=\dot{b}+\left(g-\dot{\omega}_{z}\right) \sin \theta_{w}+\left(\dot{\dot{w}}_{x} \cos \psi_{w}+\dot{w}_{y} \sin \psi_{w}\right) \cos \theta_{w} \tag{12}
\end{equation*}
$$

and

$$
\left.\begin{array}{r}
-a_{z w} \sin \phi_{w}+a_{y w} \cos \phi_{w}=c_{1} \tag{13}\\
a_{y w} \sin \phi_{w}+a_{z w} \cos \phi_{w}=c_{2}
\end{array}\right\}
$$

where

$$
\left.\begin{array}{l}
c_{1}=\psi_{w} v \cos r_{w}+\left(\dot{w}_{y} \cos \psi_{w}-\dot{w}_{x} \sin \psi_{w}\right) \tag{14}\\
c_{2}=\left(z-g+a_{x w} \sin \theta_{w}\right) / \cos \theta_{w}
\end{array}\right\}
$$

Next, we solve equation (13) for $s \ln \phi_{W}, \cos \phi_{W}$ as

$$
\left.\begin{array}{l}
\sin _{w}=\left(c_{2} a_{y w}-c_{1} a_{z w}\right) /\left(a_{y w}^{2}+a_{z w}^{2}\right) \tag{15}\\
\cos \phi_{w}=\left(c_{1} a_{y w}+c_{2} a_{z w}\right) /\left(a_{y w}^{2}+a_{z w}^{2}\right)
\end{array}\right\}
$$

from which we obtain the expression

$$
\begin{equation*}
\tan _{w}=\frac{\left(a_{y w} / a_{z W}\right)+\left(c_{1} /-c_{2}\right)}{1-\left(a_{y w} / a_{z w}\right)\left(c_{1} /-c_{2}\right)} \tag{16}
\end{equation*}
$$

It should be noted that alde reaction Ayw ta usualily amall compared with $a_{\text {RW }}$. In fack, in order to oftimate ϕ_{w} and $a_{z_{w}}$ by ustan the formulation of oquations (13) and (14), it ta necebsary to afnume that the ratio ($\mathrm{a}_{\mathrm{yw}} / \mathrm{n}_{\mathrm{zw}}$) tis nogligible. In that cage

$$
\begin{equation*}
\tan _{\mathrm{W}}=\left(\mathrm{c}_{1} /-\mathrm{C}_{2}\right) \tag{1.7}
\end{equation*}
$$

Finally, folution of equation (13) for $a_{z W}$ yielde

$$
\begin{equation*}
\mathrm{a}_{\mathrm{zw}}=\mathrm{C}_{2} \cos _{\mathrm{w}}-\mathrm{C}_{1} \sin _{\mathrm{w}} \tag{18}
\end{equation*}
$$

An analyais of the arrors in ϕ_{w} and $a_{2 w}$ incurred by meglocting the ratio ($\mathrm{a}_{\mathrm{yw}} / \mathrm{a}_{\mathrm{zw}}$) shows that

$$
\left.\begin{array}{rl}
\tan \phi_{e} & =\left(a_{y w} / a_{z w}\right) \tag{19}\\
\left(a_{e} / a_{z w}\right) & =1-\sec \phi_{e}
\end{array}\right\}
$$

where ϕ_{e} is the error in the estimate of ϕ_{W} and a_{e} is the error in the estimate of a_{zw}.

Body-Axis Euler Angles

We have shown that wind-axis Euler angles ($\psi_{W}, \theta_{W}, \phi_{W}$) and specific forces ($a_{x w}, a_{y w}, a_{z w}$) may be determined from vehicle position derivatives and wind information. It is, however, the attitude of the body frame F_{B} relative to F_{V} as described by the Euler angles ($\psi_{\mathrm{b}}, \theta_{\mathrm{b}}, \phi_{\mathrm{b}}$) that is of primary interest in the analysis of vehicle motion. Recall that the frames F_{B} and F_{W} are displaced by angle of attack α and sidesitp angle β (see Appendix A). In this development, we assume that sideslip is negligible, which is consistent with the statement $a_{y w} \approx 0$. In the next section, we obtain an estimate of α by using $a_{x w}, a_{z w}, V$ and performance data for a particular aircraft. Hence, given ($\psi_{w}, \theta_{w}, \phi_{w}$) and (α, β), it should be possible to determine expressions for the body-axis angles ($\psi_{b}, \theta_{b}, \phi_{b}$). To conclude this section, therefore, we shall review the transformation between frames F_{B} and F_{W} and derive the expressions relating body and wind-axis Euler angles.

The body-axis system F_{B} is carried into the wind-axis system $F^{\prime} W$ by the rotation sequence ($0,-\alpha, \beta$). The transformation matrix is given by

$$
\begin{equation*}
L_{W B}=L_{z}(\beta) L_{y}(-\alpha) \tag{20}
\end{equation*}
$$

Now, note that a vector b in F_{B} may be transformed into $F V$ in either of two equivalent ways:

$$
\begin{equation*}
v=L_{V B} b \text { or } V=L_{V W} L_{W B} b \tag{2L}
\end{equation*}
$$

Here v ia a vector with goordinatea in F_{V}, and $L_{V B}$ reprosente the tranaformation

$$
\begin{equation*}
I_{V B}-L_{z}\left(-\psi_{b}\right) L_{y}\left(-\theta_{b}\right) I_{x}\left(-\phi_{b}\right) \tag{22}
\end{equation*}
$$

Hence wo can exprear

$$
\begin{equation*}
L_{W B}=L_{W W} L_{W B} \tag{23}
\end{equation*}
$$

so that given ($\phi_{W}, 0_{W}, \psi_{W}$) and (α, β) we ahould be able to solve for ($\phi_{\mathrm{b}}, \mathrm{o}_{\mathrm{b}}$, ψ_{b}). In order to do thit, wo form the matrix product indicated by equation (22):

$$
\left.L_{V B}=\left[\begin{array}{lll}
\cos \theta_{b} \cos \psi_{b} & \sin \phi_{b} \sin \theta_{b} \cos \psi_{b} \tag{24}\\
-\cos \phi_{b} \sin \psi_{b}
\end{array} \quad \begin{array}{l}
\cos \phi_{b} \sin \theta_{b} \cos \psi_{b} \\
\cos \theta_{b} \sin \psi_{b} \sin \psi_{b}
\end{array}\right] \begin{array}{l}
\sin \phi_{b} \sin \theta_{b} \sin \psi_{b} \\
+\cos \phi_{b} \cos \psi_{b} \sin \theta_{b} \sin \psi_{b} \\
-\sin \theta_{b}
\end{array} \quad \begin{array}{l}
-\sin \phi_{b} \cos \psi_{b}
\end{array}\right]
$$

from which it follows that

$$
\begin{align*}
& \tan \phi_{b}=\ell_{32} / \ell_{33} \tag{25}\\
& \sin \theta_{b}=-\ell_{31} \tag{26}\\
& \tan \psi_{b}=\ell_{21} / \ell_{11} \tag{27}
\end{align*}
$$

where the $\left\{\ell_{1 j}\right\}$ are elements of LVB. (An equivalent representation can be found in ref. B.) It is convenient to use the trigonometric identity for $\tan \left(\psi_{\mathrm{b}}-\psi_{\mathrm{W}}\right)$ with equation (27) to obtain the expression

$$
\begin{equation*}
\tan \left(\psi_{b}-\psi_{w}\right)=\left(\ell_{21} \cos \psi_{w}-\ell_{11} \sin \psi_{w}\right) /\left(l_{11} \cos \psi_{w}+\ell_{21} \sin \psi_{w}\right) \tag{28}
\end{equation*}
$$

Finally, we evaluate che matrix product of equation (23) as shown in table I and substitute the required elements of $\left\{\ell_{1 j}\right\}$ into equations (25), (26), and (28) to obtain the desired body-angle formulas

$$
\begin{align*}
\tan \phi_{b} & =\frac{\cos \beta \sin \phi_{W} \cos \theta_{W}-\sin \beta \sin \theta_{W}}{\left(\cos \alpha \cos \phi_{W}-\sin \alpha \sin \beta \sin \phi_{W}\right) \cos \theta_{W}-\sin \alpha \cos \beta \sin \theta_{W}} \tag{29}\\
\sin \theta_{b} & =\cos \alpha \cos \beta \sin \theta_{W}+\left(\sin \alpha \cos \phi_{W}+\cos \alpha \sin \beta \sin \phi_{W}\right) \cos \theta_{W} \tag{30}\\
\tan \left(\psi_{b}-\psi_{W}\right) & =\frac{\sin \alpha \sin \phi_{W}-\cos \alpha \sin \beta \cos \phi_{W}}{\cos \alpha \cos \beta \cos \theta_{W}-\left(\sin \alpha \cos \phi_{W}+\cos \alpha \sin \beta \sin \phi_{W}\right) \sin \theta_{W}} \tag{31}
\end{align*}
$$

table I.-- mlements of matrix $\mathrm{I}_{\mathrm{t}} \mathrm{vb}$

$$
\begin{aligned}
& L_{V B}=L_{V W W B} L_{W B}=L_{p}\left(-\psi_{W}\right) L_{y}(-\theta) L_{w}\left(-\phi_{W}\right) L_{g}(\beta) L_{y}(=\alpha)=\left[\begin{array}{lll}
\ell_{11} & \ell_{12} & \ell_{13} \\
\ell_{21} & \ell_{22} & \ell_{23} \\
\ell_{31} & \ell_{32} & \ell_{33}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { - alad (} \left.\cos \phi_{W} \sin _{w} \cos \psi_{w}+\sin \phi_{W} \sin \psi_{W}\right) \\
& \ell_{21} \text { - } \cos \cos \cos \beta \cos \theta_{w} \sin \psi_{w} \cos \alpha \operatorname{ain} \beta\left(\operatorname{cota} \phi_{w} \sin \theta_{w} \sin \psi_{w}+\cos \phi_{w} \cos \psi_{w}\right) \\
& \text { - } \sin \alpha\left(\cos \phi_{W} \sin \theta_{W} \sin \psi_{W}-\theta \ln \phi_{W} \cos \psi_{W}\right) \\
& \ell_{31}=\cos \alpha \cos \beta \sin \theta_{W}-\cos \alpha \sin \beta \sin \phi_{W} \cos 0_{W}-\operatorname{sina} \cos \phi_{W} \cos \theta_{W} \\
& \ell_{12}=\sin \beta \cos \theta_{W} \cos \psi_{W}+\cos \beta\left(\sin \phi_{w} \sin \theta_{W} \cos \psi_{w}-\cos \phi_{W} \sin \psi_{W}\right) \\
& \ell_{22} \Rightarrow \sin \beta \cos \theta_{w} \sin \psi_{w}+\cos \beta\left(\sin \phi_{w} \sin \theta_{w} \sin \psi_{w}+\cos \phi_{w} \cos \psi_{w}\right) \\
& \ell_{32}=-\sin \beta \sin \theta_{w}+\cos \beta \sin \phi_{w} \cos \theta_{w} \\
& \ell_{13}=\sin \alpha \cos \beta \cos \theta_{w} \cos \psi_{W}-\sin \alpha \sin \beta\left(\sin \phi_{W} \sin \theta_{W} \cos \psi_{W}-\cos \phi_{W} \sin \psi_{w}\right) \\
& +\cos \alpha\left(\cos \phi_{W} \sin \theta_{W} \cos \psi_{W}+\sin \phi_{W} \sin \psi_{W}\right) \\
& \ell_{23}=\sin \alpha \cos \beta \cos \theta_{w} \sin \psi_{w}-\sin \alpha \sin \beta\left(\sin \phi_{w} \sin \theta_{w} \sin \psi_{w}+\cos \phi_{w} \cos \psi_{w}\right) \\
& +\cos \alpha\left(\cos \phi_{W} \sin \theta_{W} \sin \psi_{w}-\sin \phi_{W} \cos \psi_{W}\right) \\
& \ell_{33}=-\sin \alpha \cos \beta \sin \theta_{w}-\sin \alpha \sin \beta \sin \phi_{w} \cos \theta_{w}+\cos \alpha \cos \phi_{w} \cos \theta_{w}
\end{aligned}
$$

In thin hection, proceduren for determining atreraft motiona and foreen from radar or foll data are bumartaed; the procedures are baned on the equatione developed in the proviour beetion, We anmume that certatn typen of data momaliog, auch an dropouth, wild pointa, ote., have beon removed, and that eorrection for temporaturo, pronsure, etc., have been made to atr data
 wind monsuremontit, if availabid, mey have boan recordod many miloe fron the erash bite and at a difforent time from that of the aceddent. Usually, data buffielent to detormine only w_{x} and w_{y} (as functions of aletitude) aro obtalned. Hunce, it must often be assumed thet $W_{2}=0$. These 1 Imitations notwithetanding, we can then proceed to compute wind-axis Euler angles and forecs along the trajectory, to cetimate an angle-of-attack-time history, and to determine the body-axis Euler angles. The necessary assumption for a solution with oither data sot is that vehicie side force $a_{y w}$ and sidasilp angle β are negligible.

Analysis of Radar Data

We assume that time his sories of vehicle position (x, y, z) ar * ifds (w_{x}, w_{y}, w_{z}) are avallable. Frrst, "smooth" the data (see 40nn nar. i, to obtain estimates of vehicle velocity ($\dot{x}, \dot{y}, \dot{z}$) and accelcencion (i. \ddot{y}, \dot{y}). We then use equations (2) through (4) to determine wind-àis angles ψ_{w} and θ_{w} and airspeed V :

$$
\left.\begin{array}{rl}
\psi_{w} & =\tan ^{-1}\left[\left(\dot{y}-w_{y}\right) /\left(\dot{x}-w_{x}\right)\right] \tag{32}\\
\theta_{w} & =\sin ^{-1}\left[-\left(\dot{z}-w_{z}\right) / v\right] \\
v & =\left[\left(\dot{x}-w_{x}\right)^{2}+\left(\dot{y}-w_{y}\right)^{2}+\left(\dot{z}-w_{z}\right)^{2}\right]^{1 / 2}
\end{array}\right\}
$$

Next, we determine excess thrust by using equation (11) in equation (12), which yields

$$
\begin{equation*}
I_{x w}=\left(x \cos \psi_{w}+y \sin \psi_{w}\right) \cos \theta_{w}-(z-g) \sin \theta_{w} \tag{33}
\end{equation*}
$$

and then we solve for 11ft and wind-axis roll angle with

$$
\left.\begin{array}{l}
a_{z w}=c_{2} \cos \phi_{w}-c_{1} \sin \phi_{w} \tag{34}\\
\phi_{w}=\tan ^{-1}\left(c_{1} /-c_{2}\right)
\end{array}\right\}
$$

where equation (9) has been used in equation (14) to give

$$
\left.\begin{array}{l}
c_{1}=y \cos \psi_{w}-\ddot{x} \operatorname{sir} r_{w} \psi_{w} \tag{35}\\
c_{2}=\left(z-g+a_{x w} \sin \theta_{w}\right) / \cos \theta_{w}
\end{array}\right\}
$$

Notice that in equations (33) and (35) there is no depandence on windderivative ($\dot{w}_{x}, \dot{w}_{y}, \dot{w}_{g}$) information.

Finality, in order to obtain the body-axia anglen ($\psi_{b}, \theta_{b}, \phi_{b}$), an estimate of angle of attack is needed. In the linear region, that eatimate can be approximated by

$$
\left.\begin{array}{l}
\alpha=\alpha_{0}-m a_{g w} / \Delta s c_{L_{\alpha}} \tag{36}\\
Q=(1 / 2) \rho v^{2}
\end{array}\right\}
$$

where m is mass, S is wing area, ρ is air density, and $C_{L_{\alpha}}$ is tha derivative of the ifft coefficient with respect to α. Values of α_{0} and $C_{L_{\alpha}}$ depend primarily on aircraft configuration and Mach number and are tabulated ${ }^{\alpha}$ for a given alrcraft. For high angles of attack, a flat-plate relationship yields a good approximation (refs. g and 10) : 2

$$
\begin{equation*}
\alpha=\tan ^{-1}\left(a_{x w} / a_{z w}\right) \tag{37}
\end{equation*}
$$

Now the body angles can be determined by using equations (29) through (31), with $\beta=0$:

$$
\left.\begin{array}{l}
\psi_{b}=\psi_{w}+\tan ^{-1}\left[\sin \alpha \sin \phi_{w} /\left(\cos \alpha \cos \theta_{w}-\sin \alpha \cos \phi_{w} \sin \theta_{w}\right)\right] \tag{38}\\
\theta_{b}=\sin ^{-1}\left(\cos \alpha \sin \theta_{w}+\sin \alpha \cos \theta_{w} \cos \phi_{w}\right) \\
\phi_{b}=\tan ^{-1}\left[\cos \theta_{w} \sin \phi_{w} /\left(\cos \alpha \cos \theta_{w} \cos \phi_{w}-\sin \alpha \sin \theta_{w}\right)\right]
\end{array}\right\}
$$

Analysis of Foll Data
The data set derived from a fcil record consists of true airspeed v, heading angle ψ_{b}, altitude $-z$, and normal specific force $-a_{z b}$. These quantities, along with time derivatives $\dot{\hat{}}, \psi_{b}, \dot{z}$, and \ddot{z}, wind information, and aircraft performance data, can be utilized to provide an accident scenario. First, we use equation (3) to determine the wind-axis pitch angle θ_{w} :

$$
\begin{equation*}
\theta_{w}=\sin ^{-1}\left[-\left(\dot{z}-w_{z}\right) / v\right] \tag{39}
\end{equation*}
$$

Next, the forces $a_{x w}$ and $a_{z w}$ and the roll angle ϕ_{w} are estimated by using equations (12) through (14):.

$$
\left.\begin{array}{c}
a_{x w}=\dot{V}+\left(g-\dot{w}_{z}\right) \sin \theta_{W}+\left(\dot{w}_{x} \cos \psi_{w}+\dot{w}_{y} \sin \psi_{w}\right) \cos \theta_{w} \\
a_{w}=C_{2} \cos \phi_{W}-C_{1} \sin \phi_{w} \tag{41}\\
\phi_{W}=\tan ^{-1}\left(C_{1} /-C_{2}\right)
\end{array}\right\}
$$

where

$$
\begin{equation*}
\dot{w}_{x}=\frac{d w_{x}}{d z} s ; \quad \dot{w}_{y} \quad \stackrel{d w_{y}}{d:} n ; \quad \dot{w}_{y}=0 \tag{43}
\end{equation*}
$$

 Fimally, after osthut las anglo of attack as in the radar case, wo solvo for the unknown fulor: anybes:

Thu Foll record apparently contalas redundancy, fince the measurement $a_{a b}$ hat not appeared fin any of the eymations. 'The redmadancy may be utillzed to provide an independent estimate of angle of attack. In the linear regton that estimate can be approximated by

$$
\begin{equation*}
a=a_{0}-m a_{z b} / \operatorname{lis}_{N_{\alpha}} \tag{4.5}
\end{equation*}
$$

where m, Q, and S have been previously defined and $\mathcal{C}_{N_{X}}$ is the derivative of the normal force coefficient. Again, a_{0} and $C_{N_{i}}$ would be found as tabulated functions of conflguration and Mach number for a given aireraft. Outside of the linear region, a may be obtained from a flat-plate relation equivalent to equation (37), which is

$$
\begin{equation*}
a=\sin ^{-1}\left(a_{x w} / a_{z b}\right) \tag{46}
\end{equation*}
$$

Using the estimate of a so obtained, we can determine the wind-axis reaction term $a_{z w}$ independently of ϕ_{w}. That expression is given by

$$
\begin{equation*}
a_{z w}=a_{z b} / \cos a-a_{x w} \tan y \tag{47}
\end{equation*}
$$

One way that the redundancy implied by equation (47) call be util1zed is to provide a check on the assumption that the ratio (ayw $/ a_{z i w}$) is nogligibly mandil. If each of the relationa in equation (15) is squated and added, the reable is

$$
\begin{equation*}
a_{y w}^{2}+a_{z w}^{2}=c_{1}^{2}+c_{2}^{2} \tag{48}
\end{equation*}
$$

from whath the mapultind

$$
\begin{equation*}
\left|a_{y w} / a_{a w}\right|+\left[\left(a_{i}^{i}+(0,0) / a_{0 w}^{0}-1\right]^{1 /!}\right. \tag{4,1}
\end{equation*}
$$

 can br computad I rom

$$
\begin{equation*}
\phi_{w}=n n^{-1}(-(i, / a n) \tag{50}
\end{equation*}
$$

 ol ϕ_{w} sin bo dotormbinct ivom tho cxprose tell

$$
\begin{equation*}
\left|\phi_{w}\right|=\tan ^{-1}\left[\left(a_{a w} / c_{0}\right)!\cdot 1\right]^{1 / 2} \tag{51}
\end{equation*}
$$

 Manfoulat fon of dquation (41) ylolds

$$
\begin{equation*}
e_{2}-a_{: 3} \operatorname{cosp}_{w} \tag{52}
\end{equation*}
$$

from which an exprosalon for vertical abeoterat fan

$$
\begin{equation*}
\left.\because \text { as } a_{a w} \cos \phi_{w} \cos \theta_{w}-a_{x w} \operatorname{stat}\right)_{w}+8 \tag{5,3}
\end{equation*}
$$

followe. Honce, equat fon (b3) may be lategrated twico, and with approprlate cholec of constante the result shond mateh the alt thate reoord.

BNN:IIIIING REMARKS

 metcorolondeal finformat fon ate also ut IIIBd.

'Has procodares deacribed horela have hern lmplament od to asal:at the

AXIS BYS'IMM AND TRANSHORMATION:

 They aro doflacd an Pollown:

(b) Tho vohiole-catriod vertical frame FV, with axes Opxyyv:V, hat ith orfgin fixed at the mass center of the volifele. Fot the applications considered hereln the curvature of the earth Ls neglected, and the axes of FV are taken paralled to those ol Fl 。
 flxod at the mass center and has its axis $H_{w} x_{N}$ ditrected along the velocity vector of the vehide relative to the atmosphere. Axts Owaw 1 tos the the vehtele plate of symmetry.
 fixed at the mass conter and has its axts $O_{B} x_{B}$ parallel to the arodynamic referenco direction (zero-lift line). Axis $O_{B Z B}$ lies in the velifele plane of symmetry.

In flight dymaics, the Euler angles describe the oriontation of the vehicle-cariled vertical frame FV with respect to dther the wind-axis system FW or the body-axis system FB. The angles (ψ_{w}, θ_{w}, 中w) rotate FV into colncidence with F_{W}; the angles $\left(\$ b, O_{b}, \phi_{b}\right)$ rotate F_{V} into coincidence with F_{B}. The following steps deseribe the sequence of rotations illuatrated in figure 2.
(a) A rotation is made about $0 z_{V}$, carrying the axes to $0 \times{ }_{2} y_{2} z_{2}$. This is the yaw angle ψ.
(b) A rotation is made about $0 y_{2}$, carrying the axes to $0 x_{3} y_{3} z 3$. This is the pitch angle θ.
(c) A rotation is made about $0 x_{3}$, carrying the axes to their final position $0 x y z$. This is the roll angle ϕ.

Figure 2. ${ }^{\text {Euler }}$ angles.
The matrices required to transform a vector from F_{V} into either F_{W} or F_{B} correspond to the sequence of rotations (ψ, θ, ϕ) and are given by

$$
\begin{equation*}
L_{W V}=L_{x}\left(\phi_{w}\right) L_{y}\left(\theta_{w}\right) L_{z}\left(\psi_{w}\right) \tag{A1}
\end{equation*}
$$

for the wind axes, and

$$
\begin{equation*}
L_{B V}=L_{X}\left(\phi_{b}\right) L_{y}\left(\theta_{b}\right) L_{z}\left(\psi_{b}\right) \tag{A2}
\end{equation*}
$$

fur the body axes. The transformations assoclated with a single rotation about each of the coordinate axes are

$$
\begin{align*}
& L_{x}(\phi)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & \sin \phi \\
0 & -\sin \phi & \cos \phi
\end{array}\right] \tag{A3}\\
& L_{y}(0)=\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right] \tag{A4}
\end{align*}
$$

$$
L_{r_{1}}(\psi)=\left[\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \tag{A5}\\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

It ahould be notod that the producta $\mathcal{L}_{x}(\phi) L_{x}(-\phi), L_{y}(\theta) L_{y}(-\theta)$, and $L_{y}(\psi) L_{Z}(-\psi)$ oach reduce to the unit matrix. Thus, tho transformations of equations (Ai) and (A2) are orthogonal, that 1a:

$$
\left.\begin{array}{l}
I_{V W}=L_{z}^{\prime}\left(-\psi_{W}\right) L_{y}\left(-\theta_{w}\right) L_{x}\left(-\phi_{w}\right)=L_{W V}^{T} \tag{AG}\\
L_{V B}=L_{z}\left(-\psi_{b}\right) L_{y}\left(-\theta_{b}\right) L_{x}\left(-\phi_{b}\right)=L_{B V}^{T}
\end{array}\right\}
$$

where the superscript T denotes the matrix transpose.
Finally, it should be noted that frames F_{W} and F_{B} are displaced by angle of attack α and sideslip angle β. Specificaliy, the body-axis system F_{B} is carried into the wind-axis system F_{W} by the rotation sequence $(0,-\alpha, \beta)$. The transformation matrix is given by

$$
\begin{equation*}
L_{W B}=L_{z}(\beta) L_{y}(-\alpha) \tag{A7}
\end{equation*}
$$

APPENDIX B

A SMOOTHING ALGORITHM

SMOOTH is a routine that "smooths" a data record and provides estimates of its first and aecond derivatives with reapect to the independent variable. The algorithm, adapted from reference 11, passos a "least-squares moving arc" through the data. 'Ithe arc is a second-degree polynomial epanning an interval of NS (odd) equally spaced data points such that

$$
\left.\begin{array}{rl}
x_{1} & =a_{n}+a_{1}(1-p)+a_{2}(1-p)^{2} \tag{B1}\\
p & =j-(N S-1) / 2
\end{array}\right\}
$$

where $\left(a_{0}, a_{1}, a_{2}\right)$ arc chosen to minimize

$$
\begin{equation*}
J=\sum_{i=j-N S+1}^{1=j}\left(z_{i}-x_{i}\right)^{2} \tag{B2}
\end{equation*}
$$

The data record consists of the samples $z_{i}, f=1, \ldots$, NPTS. Values of the polynomial and its first two derivatives are computed at the central point p of each interval as the arc is passed through the data. Estimates near the beginning and end of the data record are obtained by extrapolation of the first and last polynomials.

A FORTRAN IV listing of the program is given in figure 3. The subroutine call statement is CALL SMOOTH ($Z, X, Y, W, N S, H, N P T S$), where the parameters are
$Z \quad$ input vector of length NPTS containing data record to be smoothed
X output vector of length NPTS containing smoothed data record
Y output vector of length NPTS containing first derivative of X
W output vector of length NPTS containing second derivative of X
NS number of points desired in smoothing interval; must be odd and $3 \leq N S \leq N P T S$

H sample interval, sec
NPTS number of points in data record

```
    SURRUUTINE gMILITMCZ,X,Y,NoD,G,H,NPTSI
    WIMENSION L(NPIS)AX(NQTS) ((NPTS),W(NPTS)
C
    REF& WHSTE SANUS HH IIF DH METHIOSS, DI; lgO
        LF(NGOGT.NHTS) NSAR.PTS
        C3m?./{H**Z)
C CuEFFICIENT CALCIMLATINN
        N#NS
        ENSHEN**2
        D1EN*(ENSO-4.)
        D2EENS[G-1.
        C11E.75*(3.*ENSO-7.)/1)!
        C13=-15.101
        G22alea(IN*D2)
        C33m012.*C13/02
C
    INITIALIZE SUM CALCULAIION
        AP=7(1)
        \forallP=0.
        CPan.
c
C COMPUTE SUMS RECURSIVELY FOMK NES,5&O-ONS
    DO IUU NE3.NS.C
    NM1E(N-1)/2
    NP1&(N+1)/2
    NM1g(vENM1**Z
    NP1SGENP1**2
        NXT1=N-1
        NXTPWN
        APEAP+Z(NXTI)+Z(NXI2)
        甘P=GH-AP+NMS#2(NXTI)+NP1*2(NXPC)
        CP=CP-Z.*BP-AP+(NM1S(2)*2(NXT1)+(NP180)*Z(NXT2)
100 CONTINUE
        NSTPENPTSONMI
C
    AOEC11*AP+C13*CP
    A1:CR2*&P
```

 Figure 3.- Listing of smoothing routine.
    ```
        ABEGSJ*AM&ESSACP
        DO 130 IEI,NPI
        LBIENPI
```



```
        V(1)=(A.1+E, 且6AB)YM
        W(%)EC3*AZ
$50 CONTINUE
    IP(NA,EQ_NPYIS OO 10 180
C
INYER&OR IMOOYM&NO ($,OT,NPII IOLE,NSYP)
    MNNPI&1
    DO 200 IHM,NEPP
    L8PESONPI
    NXP要I&NMI
    APGAPOZ(LST)OE(NXY)
    BPGAP#AP&NMI* 2(LSP)&NPI&2(NKF)
    CP#GPOZ, BPOAPONMSSOWZ(LSP)+NPISOAZ(NXT)
    AOBCIIHAR+CIS#CP
```



```
    AR+CI3mAM&CSSAEP
    x(1)SAO
    Y(I)期1/M
    W(8)açome
200 CONPINUE
290 GONTINUE
C
    gMOOTMED VALUES FOM INNEPO&I,00N,NPY!
    MHNEPP+1
    OO 300 IEM,NPTS
```



```
    X(I) ANO&b*(A&&LHAZ)
    Y(I)&(AI&E,Wh由AZSUH
    W(I)#CSmA2
300 GONTINUE
    RETUAN
    ENO
```

 Figure 3.- Concluded.
 $$
\begin{aligned}
& \text { ORIGINAL PAGE IS: } \\
& \text { OF POOR QUALITY }
\end{aligned}
$$

RUFERENCES

 Analysis Uaing Limitod Filght and Radar Datn. Tonth Annual Symponlum
 1979.
2. MLILor, C. O. . ; and Laynor, W. G.: Uso of ARIS-I II Lin Alreraft Acoldont Investigation. Air I'raffic Control Aseociation Anmal Mocting, Miaml, Florida, October 16, 1973.
3. Roberts, C. A.: The Flight Data Resorder and tho N'SB's Now Data Reduction Station. SASI Seminar, October 1974.
4. Special Study - Fitght Data Recorder Readout Experience In Aireraft Accident Investigatluns 1960-1.973, NTSB-MAS-75-1, May 14, 1975.
5. Anderson, C. M.: Clvil Alreraft Accident Analysis In he United States. AGARD Symposium on Aircrafc Operational Experience and its Impact on Safety and Survivability, Sade-fford, Norway, May 31 - June 3, 1976.
6. Dunlap, E. W.; and Porter, M. B.: Theory of the Measurement and Standardization of In-Filght Performance of Aireraft. FITC-TD-71-1, Apri1 1971.
7. Etkin, Bernard: Dynamics of Atmospheric Flight. John Wiley \& Sons, Inc., 1972, Chapters 4 and 5.
8. Meyer, G.; Lee, H.; and Wehrend, W.: A Method for Expanding a Direction Cosine Matrix into an Euler Sequence of Rotations. NASA TM X-1384, 1967.
9. Aoyag1, Kıyoski; and Tolhurst, Willam H. Jr.: Large-Scale Wind-Tunnel Tests of a Subscaic Transport With Aft h Ine Nacelles and High Tail. NASA TN D-3797, 1967.
10. Soderman, Paul T.; and Aiken, Thomas N.: Full-Scale Wind Tunnel Tests of a Small Unpowered Jet Aircraft With a T-Tail. NASA TN D-6573, 1971.
11. Comstock, D.; Wright, M.; and Tipton, V.: Handbook of Data Reduction Methods, Technical Report, White Sands Missile Range, New Mexico, March 1969.

