47 research outputs found

    hh-AlN-Mg(OH)2_{2} vdW Bilayer Heterostructure: Tuning the excitonic characteristics

    Get PDF
    Motivated by recent studies that reported the successful synthesis of monolayer Mg(OH)2_{2} [Suslu \textit{et al.}, Sci. Rep. \textbf{6}, 20525 (2016)] and hexagonal (\textit{h}-)AlN [Tsipas \textit{et al}., Appl. Phys. Lett. \textbf{103}, 251605 (2013)], we investigate structural, electronic, and optical properties of vertically stacked hh-AlN and Mg(OH)2_{2}, through \textit{ab initio} density-functional theory (DFT), many-body quasi-particle calculations within the GW approximation, and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the ABAB^{\prime} stacking having direct band gap at the Γ\Gamma with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and hetero-bilayer are investigated. The hetero-bilayer possesses excitonic peaks which appear only after the construction of the hetero-bilayer. The lowest three exciton peaks are detailedly analyzed by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the hetero-bilayer originates from spatially indirect exciton where the electron and hole localized at hh-AlN and Mg(OH)2_{2}, respectively, which is important for the light harvesting applications.Comment: Accepted by Physical Review

    Layer- and strain-dependent optoelectronic properties of hexagonal AlN

    Get PDF
    Motivated by the recent synthesis of layered hexagonal aluminum nitride (h-AlN), we investigate its layer- and strain-dependent electronic and optical properties by using first-principles methods. Monolayer h-AlN is a wide-gap semiconductor, which makes it interesting especially for usage in optoelectronic applications. The optical spectra of 1-, 2-, 3-, and 4-layered h-AlN indicate that the prominent absorption takes place outside the visible-light regime. Within the ultraviolet range, absorption intensities increase with the number of layers, approaching the bulk case. On the other hand, the applied tensile strain gradually redshifts the optical spectra. The many-body effects lead to a blueshift of the optical spectra, while exciton binding is also observed for 2D h-AlN. The possibility of tuning the optoelectronic properties via thickness and/or strain opens doors to novel technological applications of this promising material. © 2015 American Physical Society

    Enhanced photocatalytic activity of CuWO4 doped TiO2 photocatalyst towards carbamazepine removal under UV irradiation

    Get PDF
    Abatement of contaminants of emerging concerns (CECs) in water sources has been widely studied employing TiO2 based heterogeneous photocatalysis. However, low quantum energy yield among other limitations of titania has led to its modification with other semiconductor materials for improved photocatalytic activity. In this work, a 0.05 wt.% CuWO4 over TiO2 was prepared as a powder composite. Each component part synthesized via the sol-gel method for TiO2, and CuWO4 by co-precipitation assisted hydrothermal method from precursor salts, underwent gentle mechanical agitation. Homogenization of the nanopowder precursors was performed by zirconia ball milling for 2 h. The final material was obtained after annealing at 500◦C for 3.5 h. Structural and morphological characterization of the synthesized material has been achieved employing X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) N2 adsorption–desorption analysis, Scanning electron microscopy-coupled Energy dispersive X-ray spectroscopy (SEM-EDS), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-vis DRS) for optical characterization. The 0250.05 wt.% CuWO4-TiO2 catalyst was investigated for its photocatalytic activity over carbamazepine (CBZ), achieving a degradation of almost 100% after 2 h irradiation. A comparison with pure TiO2 prepared under those same conditions was made. The effect of pH, chemical scavengers, H2O2 as well as contaminant ion effects (anions, cations), and humic acid (HA) was investigated, and their related influences on the photocatalyst efficiency towards CBZ degradation highlighted accordingly

    Bilayer SnS2: Tunable stacking sequence by charging and loading pressure

    Get PDF
    Employing density functional theory-based methods, we investigate monolayer and bilayer structures of hexagonal SnS2, which is a recently synthesized monolayer metal dichalcogenide. Comparison of the 1H and 1T phases of monolayer SnS2 confirms the ground state to be the 1T phase. In its bilayer structure we examine different stacking configurations of the two layers. It is found that the interlayer coupling in bilayer SnS2 is weaker than that of typical transition-metal dichalcogenides so that alternative stacking orders have similar structural parameters and they are separated with low energy barriers. A possible signature of the stacking order in the SnS2 bilayer has been sought in the calculated absorbance and reflectivity spectra. We also study the effects of the external electric field, charging, and loading pressure on the characteristic properties of bilayer SnS2. It is found that (i) the electric field increases the coupling between the layers at its preferred stacking order, so the barrier height increases, (ii) the bang gap value can be tuned by the external E field and under sufficient E field, the bilayer SnS2 can become a semimetal, (iii) the most favorable stacking order can be switched by charging, and (iv) a loading pressure exceeding 3 GPa changes the stacking order. The E-field tunable band gap and easily tunable stacking sequence of SnS2 layers make this 2D crystal structure a good candidate for field effect transistor and nanoscale lubricant applications. © 2016 American Physical Society

    Hydrogen-induced sp2-sp3 rehybridization in epitaxial silicene

    Get PDF
    We report on the hydrogenation of (3×3)/(4×4) silicene epitaxially grown on Ag(111) studied by in situ Raman spectroscopy and state-of-the-art ab initio calculations. Our results demonstrate that hydrogenation of (3×3)/(4×4) silicene leads to the formation of two different atomic structures which exhibit distinct spectral vibrational modes. Raman selection rules clearly show that the Si atoms undergo a rehybridization in both cases from a mixed sp2-sp3 to a dominating sp3 state increasing the distance between the two silicene sublattices. This results in a softening of the in-plane and a stiffening of the out-of-plane phonon modes. Nevertheless, hydrogenated epitaxial silicene retains a two-dimensional nature and hence can be considered as epitaxial silicane. The level of hydrogenation can be determined by the intensity ratio of the Raman modes with different symmetries. © 2017 American Physical Society

    Atomically-thin micas as proton conducting membranes

    Get PDF
    Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons. This seemed to suggest that only one-atom-thick crystals could be used as proton conducting membranes. Here we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one-two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials, which extends from 100 C to 500 C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 C, well above the current requirements for the industry roadmap. We attribute the fast proton permeation to 5 A-wide tubular channels that perforate micas' crystal structure which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals with similar nm-scale channels, which could help close the materials gap in proton-conducting applications

    Atomic structure and defect dynamics of monolayer lead iodide nanodisks with epitaxial alignment on graphene

    Get PDF
    Lead Iodide (PbI2) is a large bandgap 2D layered material that has potential for semi- conductor applications. However, atomic level study of PbI2 monolayer has been limited due to challenges in obtaining thin crystals. Here, we use liquid exfoliation to produce monolayer PbI2 nanodisks (30-40 nm in diameter and > 99% monolayer purity) and deposit them onto suspended graphene supports to enable atomic structure study of PbI2. Strong epitaxial alignment of PbI2 monolayers with the underlying graphene lattice occurs, leading to a phase shift from the 1 T to 1 H structure to increase the level of commensuration in the two lattice spacings. The fundamental point vacancy and nanopore structures in PbI2 monolayers are directly imaged, showing rapid vacancy migration and self-healing. These results provide a detailed insight into the atomic structure of monolayer PbI2, and the impact of the strong van der Waals interaction with graphene, which has importance for future applications in optoelectronics
    corecore