2,194 research outputs found

    Antiferromagnetism at the YBa2Cu3O7 / La2/3Ca1/3MnO3 interface

    Full text link
    The magnetic properties of a series of YBa2Cu3O7-x/La2/3Ca1/3MnO3 (YBCO/LC1/3MO) superlattices grown by dc sputtering at high oxygen pressures (3.5 mbar) show the expected ferromagnetic behaviour. However, field cooled hysteresis loops at low temperature show the unexpected existence of exchange bias, effect associated with the existence of ferromagnetic/antiferromagnetic (F/AF) interfaces. The blocking temperature (TB) is found thickness dependent and the exchange bias field (HEB) is found inversely proportional to the FM layer thickness, as expected. The presence of an AF material is probably associated to interface disorder and Mn valence shift towards Mn4+.Comment: 12 pages, 2 figures, 1 table, submitted to Applied Physics Letter

    Magnons in Ferromagnetic Metallic Manganites

    Full text link
    Ferromagnetic (FM) manganites, a group of likely half-metallic oxides, are of special interest not only because they are a testing ground of the classical doubleexchange interaction mechanism for the colossal magnetoresistance, but also because they exhibit an extraordinary arena of emergent phenomena. These emergent phenomena are related to the complexity associated with strong interplay between charge, spin, orbital, and lattice. In this review, we focus on the use of inelastic neutron scattering to study the spin dynamics, mainly the magnon excitations in this class of FM metallic materials. In particular, we discussed the unusual magnon softening and damping near the Brillouin zone boundary in relatively narrow band compounds with strong Jahn-Teller lattice distortion and charge/orbital correlations. The anomalous behaviors of magnons in these compounds indicate the likelihood of cooperative excitations involving spin, lattice, as well as orbital degrees of freedom.Comment: published in J. Phys.: Cond. Matt. 20 figure

    Signature of Magnetic Phase Separation in the Ground State of Pr1-xCaxMnO3

    Full text link
    Neutron scattering has been used to investigate the evolution of the long- and short-range charge-ordered (CO), ferromagnetic (FM), and antiferromagnetic (AF) correlations in single crystals of Pr1-xCaxMnO3. The existence and population of spin clusters as refected by short-range correlations are found to drastically depend on the doping (x) and temperature (T). Concentrated spin clusters coexist with long-range canted AF order in a wide temperature range in x = 0.3 while clusters do not appear in x = 0.4 crystal. In contrast, both CO and AF order parameters in the x = 0.35 crystal show a precipitous decrease below ~ 35 K where spin clusters form. These results provide direct evidence of magnetic phase separation and indicate that there is a critical doping x_c (close to x = 0.35) that divides the phase-separated site-centered from the homogeneous bond-centered or charge-disproportionated CO ground state.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    KK^--Nucleus Scattering at Low and Intermediate Energies

    Get PDF
    We calculate KK^--nucleus elastic differential, reaction and total cross sections for different nuclei (12^{12}C,40^{40}Ca and 208^{208}Pb) at several laboratory antikaon momenta, ranging from 127 MeV to 800 MeV. We use different antikaon-nucleus optical potentials, some of them fitted to kaonic atom data, and study the sensitivity of the cross sections to the considered antikaon-nucleus dynamics.Comment: Only 4 pages, Latex, 3 Figures. This version is much shorter than the previous one. Some details and references have been omitte

    Spin Wave Response in the Dilute Quasi-one Dimensional Ising-like Antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3

    Full text link
    Inelastic neutron scattering profiles of spin waves in the dilute quasi-one-dimensional Ising-like antiferromagnet CsCo_{0.83}Mg_{0.17}Br_3 have been investigated. Calculations of S^{xx}(Q,omega), based on an effective spin Hamiltonian, accurately describe the experimental spin wave spectrum of the 2J mode. The Q dependence of the energy of this spin wave mode follows the analytical prediction omega_{xx}(Q)=(2J)(1-5epsilon^{2}cos^{2}Qa+2epsilon^{2})^{1/2}, calculated by Ishimura and Shiba using perturbation theory.Comment: 13 pages, 4 figure
    corecore