407 research outputs found
Generation of terahertz radiation from ionizing two-color laser pulses in Ar filled metallic hollow waveguides
The generation of THz radiation from ionizing two-color femtosecond pulses
propagating in metallic hollow waveguides filled with Ar is numerically
studied. We observe a strong reshaping of the low-frequency part of the
spectrum. Namely, after several millimeters of propagation the spectrum is
extended from hundreds of GHz up to ~150 THz. For longer propagation distances,
nearly single-cycle near-infrared pulses with wavelengths around 4.5 um are
obtained by appropriate spectral filtering, with an efficiency of up to 0.25%.Comment: 6 pages, 3 figure
Complexity of Polarized Spatial Patterns in Large Area Square VCSEL
We consider pattern selection process in a wide aperture VCSEL near
threshold. We show that for a square geometry of the laser aperture, the
patterns formed at lasing threshold can be very complicated because of a
possible misalignment between directions of an intrinsic spatial anisotropy of
VCSEL and lateral boundaries of its aperture. The analogy with quantum billiard
structures is established, and fingerprints of wave chaos are found. Influence
of localized inhomogeneous in the pump current is also considered.Comment: 10 pages, 8 figures, uses REVTEX
Transient Cherenkov radiation from an inhomogeneous string excited by an ultrashort laser pulse at superluminal velocity
An optical response of one-dimensional string made of dipoles with a
periodically varying density excited by a spot of light moving along the string
at the superluminal (sub-luminal) velocity is theoretically studied. The
Cherenkov radiation in such system is rather unusual, possessing both transient
and resonant character. We show that under certain conditions, in addition to
the resonant Cherenkov peak another Doppler-like frequency appears in the
radiation spectrum. Both linear (small-signal) and nonlinear regimes as well as
different string topologies are considered.Comment: accepted to Phys. Rev.
The fundamental solution of the unidirectional pulse propagation equation
The fundamental solution of a variant of the three-dimensional wave equation
known as "unidirectional pulse propagation equation" (UPPE) and its paraxial
approximation is obtained. It is shown that the fundamental solution can be
presented as a projection of a fundamental solution of the wave equation to
some functional subspace. We discuss the degree of equivalence of the UPPE and
the wave equation in this respect. In particular, we show that the UPPE, in
contrast to the common belief, describes wave propagation in both longitudinal
and temporal directions, and, thereby, its fundamental solution possesses a
non-causal character.Comment: accepted to J. Math. Phy
Generation of unipolar pulses in a circular Raman-active medium excited by few-cycle optical pulses
We study theoretically a new possibility of unipolar pulses generation in
Raman-active medium excited by a series of few-cycle optical pulses. We
consider the case when the Raman-active particles are uniformly distributed
along the circle, and demonstrate a possibility to obtain a unipolar
rectangular video pulses with an arbitrarily long duration, ranging from a
minimum value equal to the natural period of the low frequency vibrations in
the Raman-active medium
Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers
The polarization of highly divergent modes of broad-area square vertical-cavity surface-emitting lasers is shown to be only marginally affected by material anisotropies but determined by an interplay of the polarization properties of the Bragg cavity mirrors and of the transverse boundary conditions. This leads to a locking of the polarization direction to the boundaries and its indeterminacy for wave vectors oriented along the diagonal. We point out a non-Poissonian character of nearest-neighbor frequency spacing distribution and the impossibility of single-wave number solutions
All-optical attoclock: accessing exahertz dynamics of optical tunnelling through terahertz emission
The debate regarding attosecond dynamics of optical tunneling has so far been
focused on time delays associated with electron motion through the potential
barrier created by intense ionizing laser fields and the atomic core.
Compelling theoretical and experimental arguments have been put forward to
advocate the polar opposite views, confirming or refuting the presence of
tunnelling time delays. Yet, such delay, whether present or ot, is but a single
quantity characterizing the tunnelling wavepacket; the underlying dynamics are
richer. Here we propose to complement photo-electron detection with detecting
light, focusing on the so-called Brunel adiation -- the near-instantaneous
nonlinear optical response triggered by the tunnelling event. Using the
combination of single-color and two-color driving fields, we determine not only
the ionization delays, but also the re-shaping of the tunnelling wavepacket as
it emerges from the classically forbidden region. Our work introduces a new
type of attoclock for optical tunnelling, one that is based on measuring light
rather than photo-electrons. All-optical detection paves the way to
time-resolving multiphoton transitions across bandgaps in solids, on the
attosecond time-scale
Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases
We present a combined theoretical and experimental study of spatio-temporal
propagation effects in terahertz (THz) generation in gases using two-color
ionizing laser pulses. The observed strong broadening of the THz spectra with
increasing gas pressure reveals the prominent role of spatio-temporal reshaping
and of a plasma-induced blue-shift of the pump pulses in the generation
process. Results obtained from (3+1)-dimensional simulations are in good
agreement with experimental findings and clarify the mechanisms responsible for
THz emission
Generation of unipolar half-cycle pulse via unusual reflection of a single-cycle pulse from an optically thin metallic or dielectric layer
We present a significantly different reflection process from an optically
thin flat metallic or dielectric layer and propose a strikingly simple method
to form approximately unipolar half-cycle optical pulses via reflection of a
single-cycle optical pulse. Unipolar pulses in reflection arise due to
specifics of effectively one-dimensional pulse propagation. Namely, we show
that in considered system the field emitted by a flat medium layer is
proportional to the velocity of oscillating medium charges instead of their
acceleration as it is usually the case. When the single-cycle pulse interacts
with linear optical medium, the oscillation velocity of medium charges can be
then forced to keep constant sign throughout the pulse duration. Our results
essentially differ from the direct mirror reflection and suggest a possibility
of unusual transformations of the few-cycle light pulses in linear optical
systems
- …
