6 research outputs found

    Potash mining effluents and ion imbalances cause transient osmoregulatory stress, affect gill integrity and elevate chronically plasma sulfate levels in adult common roach, Rutilus rutilus

    No full text
    Secondary salinization is a growing global ecological issue. One cause is the discharge of effluents by the potash mining industry into surface waters such as the River Werra in Germany. Increases of major ions require various physiological responses of freshwater organisms to maintain the hydromineral balance of body fluids. However, only little is known about the acute and chronic effects of high concentrations and imbalances of ions on osmoregulation in freshwater teleosts. The present study aimed to elucidate the effects of potash mining effluents and different cation ratios on the osmoregulatory capacity and gill histopathology of a native fish species. Individuals of Rutilus rutilus were exposed to the currently allowed (HT) and intended future (LT) thresholds as well as to high concentrations of Mg2+ (Mg), K+ (K), and Mg2+ and K+ (Mg + K) for a period of 24 h, 7 d, 21 d and 8 wk. Plasma osmolarity, [Na+], [Mg2+], [K+], [Ca2+], [Cl−] and [SO42−] and branchial Na+/K+-ATPase activity were determined. Moreover, histological gill alterations after 21 d and muscle water content after 8 wk were examined. HT transiently (24 h) elevated plasma osmolarity, plasma [Na+] and [Ca2+], whereas [SO42−] was chronically increased even after 8 wk. Exposure to LT, Mg and Mg + K led to increased [SO42−] levels for at least 21 d. It seems that [SO42−] is mainly disturbed by multiple ions at high concentrations and long-term effects are unknown. Hydromineral homeostasis was maintained as indicated by unchanged Na+/K+-ATPase activity and muscle water content. However, mild structural alterations of the gills were observed in all exposure groups suggesting adaptational responses but with the potential to affect gas exchange capacity. Hence, the current thresholds for potash mining effluents affect osmomineral regulation in roach and further investigations should address potential impacts on reproduction in native fish species and physiological effects of SO42−

    Potash mining effluents and ion imbalances cause transient stress in adult common roach, Rutilus rutilus

    No full text
    A present ecological issue causing secondary salinization in different countries is the discharge of effluents by the potash mining industry. In Germany, the River Werra is used as a sink for potash mining discharges containing high concentrations of ions, predominantly Cl-, K+, Na+, and Mg2+ resulting in a strong decline of the biodiversity and abundance of local species. However, hardly anything is known about the acute and chronic physiological effects of high concentrations and imbalances of ions being prevalent in potash mining effluents in fish. Therefore, the stress response and selected immune and growth parameters were investigated in standardized laboratory experiments. A native freshwater fish species, Rutilus rutilus, was exposed to concentrations of the high currently allowed (HT) and lowered future thresholds (LT) and three different ion solutions (containing high Mg2+ (Mg), high K+ (K) and high Mg2++K+ (Mg+K) concentrations) for four different exposure times (24 h, 7 d, 21 d, 8 wk). Tank water (additionally after 9 and 12 h) and plasma cortisol, glucose and protein, hematocrit and hemoglobin were determined after each exposure time. Furthermore, plasma lysozyme and head kidney leucocyte respiratory burst activity (only after 21 d) were evaluated as well as growth parameters. A transient stress response was induced in almost all groups. Tank water cortisol was elevated after 9 h in HT, LT and Mg+K and in HT after 12 h, whereas glucose concentrations increased after 24 h in all exposure groups except K. HT led to enhanced hematocrit and hemoglobin content after 24 h. Plasma protein, immune system and growth were not affected in any group. None of the ion solutions induced acute toxicity but most triggered typical acute stress reactions. Rather the sum of high ion concentrations than single ions challenged the fish. Even though the effects observed in adult roach were only transient and indicate acclimatization under laboratory conditions, adverse effects observed in the river are evident and further research on physiological endpoints including reproductive parameters and impacts on younger life stages seem to be needed to scientifically base protective thresholds
    corecore