12 research outputs found

    Temperature effect on the temporal dynamic of terrestrial invertebrates in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands

    Get PDF
    The research was carried out at the Research Centre of the Dnipro State Agrarian and Economic University in Pokrov city. Sampling was carried out in 2013–2015 on a variant of artificial soil (technosols) formed on loess-like loam, red-brown clay, green-grey clay, technological mixture of rocks, and also formed on loess-like loam with a humus-rich 70 cm top soil layer. To investigate the spatiotemporal variation in the abundance, species richness and species composition of invertebrate assemblages within the experimental polygon, the animals were sampled using pitfall traps. In total, 60 pitfall traps were operated simultaneously during each sampling period. Each year the pitfalls were emptied 26 times every 7–9 days. Invertebrates (Arthropoda and Mollusca) of 6 classes, 13 orders, 50 families and 202 species or parataxonomic units were recorded. Diplopoda was most abundant taxonomic group, though it was represented by only one species Rossiulus kessleri (Lohmander, 1927). Coleoptera and Araneae were the most numerous taxonomic groups. Readily available water for plants, precipitation, wind speed, atmospheric temperature (daily minimum, daily maximum, daily mean), atmospheric humidity and atmospheric pressure were used as environmental predictors. Two dimension geographic coordinates of the sampling locations were used to generate a set of orthogonal eigenvector-based spatial variables. Time series of sampling dates were used to generate a set of orthogonal eigenvector-based temporal variables. The moisture content in the technosols was revealed to be the most important factor determining the temporal dynamics of the terrestrial invertebrate community in conditions of semi-arid climate and the ecosystem which formed as a result of the reclamation process. Following soil moisture, the factor most strongly affecting invertebrates in the technosols was temperature. From the total set of the invertebrates, two relatively homogeneous species groups in terms of thermal preferences were extracted: the microtemperature and mesotemperature groups. The microtemperature species are more tolerant to the thermal factor, and the mesotemperature species are more sensitive. The Huisman-Olff-Fresco approach expanded by Jansen-Oksanen provides a wide set of ecologically relevant models which are able to explain species response. The species response to temperature is affected by a complex of other environmental, temporal and spatial factors. The effect of other factors on the species response must be previously extracted to find real estimations of the species temperature optima and tolerance. The approaches to solving this problem may be the object of future investigation

    The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin

    Get PDF
    The restoration of a stable and productive ecosystem after drastic disturbances to the natural environment due to mining and open-cast mining may be achieved by means of reclamation. Investigation of the hydrological budget of technosols is important task in developing adequate approaches to reclamation. Sod lithogenic soils on red-brown clay, on grey-green clay were chosen as the objects of the investigation. The simulation of moisture content in Nikopol Manganese Ore Basin technosols was performed using the Penman-Monteith approach and evaluated the role of the dependence of soils’ surface albedo on the humidity in the intensity of evapotranspiration. The research was conducted during 2013–2015 at the station for research on reclaimed land within the Nikopol Manganese Ore Basin (city Pokrov, Ukraine). The experimental area for the study of optimal modes of agricultural reclamation was created in 1968–1970. Precipitation in the investigated area was found to fall very unevenly in time. In 2013, the duration of the rainless period was 259 days, in 2014 – 264 days, in 2015 – 261 days. The maximum daily rainfall varies within 18–49 mm. There are significant interannual differences in the intensity of rainfall. The minimum total annual precipitation in 2014 was due to a decrease in atypical rainfall in late winter and early winter. The maximum annual rainfall in 2015 was caused by intense rainfall both in the spring and in mid-summer and late autumn. The average annual temperature was 11.1 ºC and the annual totals did not statistically significantly vary within the study period. The average wind speed and average atmospheric humidity are statistically significantly different from year to year. The technosols’ colour properties and surface albedo varied depending on the moisture content. There is a linear relationship between the moisture content in the soil and albedo of the soil surface. The evaluation of readily available water content was carried out based on the Penman-Monteith model taking into account meteorological data, the water-physical properties of the technosols and the dependence of soil surface albedo on soil humidity. The distribution of this index for different teсhnosols is characterized by a high level of similarity of shape due to the fact that the overall climate factors are crucial in shaping the dynamics of moisture. A complex mixture of normal distributions is the best model for representing the experimental data. The readily available water content distribution can best be represented as a mixture of two normal distributions. The relatively high moisture level is characterized for winter and spring periods. Water content in sodlithogenic soils on red-brown clay over the period of research never reached the value of the permanent wilting point. In 2013, the period when the moisture content was less than the value of the permanent wilting point lasted 23 days, and in 2014 this period lasted 39 days. Thus, you can always expect the phenomenon of drought under typical climatic conditions for the technosols on grey-green clay. It was found that monitoring water supplies before the start of the growing season can provide valuable information necessary for the selection of crops for cultivation in the current year. The results indicate the urgency of measures to save the winter rainfall on the fields. Keywords: reclamation; water regime; albedo; evapotranspiration; Penman-Monteith equation

    Эффективный метод контроля изделий из композитных материалов, керамики и упругих элементов

    Get PDF
    Запропоновано ефективний акустичний метод контролю виробів з композитних матеріалів, кераміки, пружних елементів. Цей метод контролю базується на пристрої, який являє собою пристрій генерації акустичного сигналу та систему прийому, обробки й аналізу акустичних сигналів-відгуків. Обробка отриманого сигналу надає змогу чітко визначити наявність дефектів у контрольованому об’єкті за шістьома параметрами. Також розглянуто основні характеристики та переваги цього методу. Запропоновано новий метод автоматизованого неруйнівного контролю якості, оскільки час прийому та обробка сигналу, завдяки сучасній комп'ютерній техніці, може обмежуватися декількома секундами. Тому автоматизацію даного методу акустичного контролю можна впроваджувати на автоматизованих виробничих лініях.An efficient method for acoustic control products from composite materials, ceramics, and elastic elements was proposed. This control method is based on the device, which is a device for generating an acoustic signal and receiving system witch processing and analyzing acoustic signals-reviews. Processing of the received signal allows in defining defects in a controlled facility by the six parameters. Also the main features and advantages of this method were discussed. A new method for automated non-destructive quality control was proposed. The reception, and signal processing, due to modern computer technology may be limited to a few seconds. Therefore, automation of this method of acoustic control can be implemented on automated production lines.Предложен эффективный акустический метод контроля изделий из композитных материалов, керамики, упругих элементов. Данный метод контроля, основанный на устройстве, которое представляет собой устройство генерации акустического сигнала, и систему приема, обработки и анализа акустических сигналов-откликов. Обработка полученного сигнала позволяет четко определить наличие дефектов в контролируемом объекте по шести параметрам. Также рассмотрены основные характеристики и преимущества этого метода. Предложен новый метод автоматизированного неразрушающего контроля качества. Так как время приема, и обработка сигнала, благодаря современной компьютерной технике, может ограничиваться несколькими секундами. Поэтому автоматизацию данного метода акустического контроля можно внедрять на автоматизированных производственных линиях

    The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin

    Get PDF
    The restoration of a stable and productive ecosystem after drastic disturbances to the natural environment due to mining and open-cast mining may be achieved by means of reclamation. Investigation of the hydrological budget of technosols is important task in developing adequate approaches to reclamation. Sod lithogenic soils on red-brown clay, on grey-green clay were chosen as the objects of the investigation. The simulation of moisture content in Nikopol Manganese Ore Basin technosols was performed using the Penman-Monteith approach and evaluated the role of the dependence of soils’ surface albedo on the humidity in the intensity of evapotranspiration. The research was conducted during 2013–2015 at the station for research on reclaimed land within the Nikopol Manganese Ore Basin (city Pokrov, Ukraine). The experimental area for the study of optimal modes of agricultural reclamation was created in 1968–1970. Precipitation in the investigated area was found to fall very unevenly in time. In 2013, the duration of the rainless period was 259 days, in 2014 – 264 days, in 2015 – 261 days. The maximum daily rainfall varies within 18–49 mm. There are significant interannual differences in the intensity of rainfall. The minimum total annual precipitation in 2014 was due to a decrease in atypical rainfall in late winter and early winter. The maximum annual rainfall in 2015 was caused by intense rainfall both in the spring and in mid-summer and late autumn. The average annual temperature was 11.1 ºC and the annual totals did not statistically significantly vary within the study period. The average wind speed and average atmospheric humidity are statistically significantly different from year to year. The technosols’ colour properties and surface albedo varied depending on the moisture content. There is a linear relationship between the moisture content in the soil and albedo of the soil surface. The evaluation of readily available water content was carried out based on the Penman-Monteith model taking into account meteorological data, the water-physical properties of the technosols and the dependence of soil surface albedo on soil humidity. The distribution of this index for different teсhnosols is characterized by a high level of similarity of shape due to the fact that the overall climate factors are crucial in shaping the dynamics of moisture. A complex mixture of normal distributions is the best model for representing the experimental data. The readily available water content distribution can best be represented as a mixture of two normal distributions. The relatively high moisture level is characterized for winter and spring periods. Water content in sod-lithogenic soils on red-brown clay over the period of research never reached the value of the permanent wilting point. In 2013, the period when the moisture content was less than the value of the permanent wilting point lasted 23 days, and in 2014 this period lasted 39 days. Thus, you can always expect the phenomenon of drought under typical climatic conditions for the technosols on grey-green clay. It was found that monitoring water supplies before the start of the growing season can provide valuable information necessary for the selection of crops for cultivation in the current year. The results indicate the urgency of measures to save the winter rainfall on the fields. Keywords: reclamation; water regime; albedo; evapotranspiration; Penman-Monteith equation

    Albedo of the soil cover as a factor of the temporal dynamics of readily available soil moisture in the technosols of the Nikopol manganese ore basin

    Get PDF
    The simulation of moisture content in Nikopol manganese ore basin technosols was performed using the Penman-Monteith approach and evaluate the role of the dependence of soils surface albedo from the humidity in the intensity of evapotranspiration. The sod lithogenic soils on loess-like loam and pedozem were chosen as the objects of the investigation. The research was conducted during 2012–2014 years at the investigation station of the remediation within Nikopol manganese ore basin (city Pokrov, Ukraine). The evapotranspiration from the soil surface was calculated by means of Penman-Monteith equation. Root zone moisture depletion is evaluated as the difference between soil water content at field capacity (pF = 2.3) and actual soil water content. The Ks value which is a water stress factor equals 1.0 as long as soil water content is higher than readily available water. If soil water content is lower than readily available water, Ks decreases linearly from one to zero according to total available soil water consumed. The soil water balance is performed in ISAREG with a daily time. The evaluation of readily available water content was carried out based on Penman-Monteith model taking into account meteorological data, technosols water-physical properties and the dependence of soil surface albedo on soil humidity. The color of the surface of the sod-lithogenic soil on the loess-like loam varies from yellow (2.5Y 4/2) in wet condition to yellow-red (10YR 6/5) in the dry condition. Albedo of this soil depended on the humidity varies in the range 0.17–0.31. The surface color of the pedozem varies from very dark gray (10YR 3/1) in wet condition to light-gray (2.5YR 6/2) in the dry condition. Albedo of this soil depended on the humidity varies in the range 0.10–0.31. There is a linear relationship between the moisture content in the soil and albedo of the soil surface. Albedo changes along with the humidity are most significant in the sod-lithogenic soils on loess-like loams. This is confirmed by the greatest regression coefficient. Albedo changes along with the moisture content are least significant in the pedozem. The distributionі of this index for different teсhnosols are characterized by a high level of similarity of shape due to the fact that the overall climate factors are crucial in shaping the dynamics of moisture. The distributions can be most good represented as a complex mixture of normal distributions. It was found that water supplies monitoring before the start of the growing season can provide valuable information necessary for the selection of crops for cultivation in the current year. The results indicate the urgency of measures to save the winter rainfall on the fields

    Temperature effect on the temporal dynamic of terrestrial invertebrates in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands

    Get PDF
    The research was carried out at the Research Centre of the Dnipro State Agrarian and Economic University in Pokrov city.Sampling was carried out in 2013–2015 on a variant of artificial soil (technosols) formed on loess-like loam, red-brown clay,green-grey clay, technological mixture of rocks, and also formed on loess-like loam with a humus-rich 70 cm top soil layer.To investigate the spatiotemporal variation in the abundance, species richness and species composition of invertebrate assemblages within the experimental polygon, the animals were sampled using pitfall traps. In total, 60 pitfall traps were operated simultaneously during each sampling period. Each year the pitfalls were emptied 26 times every 7–9 days. Invertebrates (Arthropoda and Mollusca) of 6 classes, 13 orders, 50 families and 202 species or parataxonomic units were recorded. Diplopoda was most abundant taxonomic group, though it was represented by only one species Rossiulus kessleri (Lohmander, 1927). Coleoptera and Araneae were the most numerous taxonomic groups. Readily available water for plants, precipitation, wind speed, atmospheric temperature (daily minimum, daily maximum, daily mean), atmospheric humidity and atmospheric pressure were used as environmental predictors. Two dimension geographic coordinates of the sampling locations were used to generate a set of orthogonal eigenvector-based spatial variables. Time series of sampling dates were used to generate a set of orthogonal eigenvector-based temporal variables. The moisture content in the technosols was revealed to be the most important factor determining the temporal dynamics of the terrestrial invertebrate community in conditions of semi-arid climate and the ecosystem which formed as a result of the reclamation process. Following soil moisture, the factor most strongly affecting invertebrates in the technosols was temperature. From the total set of the invertebrates, two relatively homogeneous species groups in terms of thermal preferences were extracted: the microtemperature and mesotemperature groups. The microtemperature species are more tolerant to the thermal factor, and the mesotemperature species are more sensitive. The Huisman-Olff-Fresco approach expanded by Jansen-Oksanen provides a wide set of ecologically relevant models which are able to explain species response. The species response to temperature is affected by a complex of other environmental, temporal and spatial factors. The effect of other factors on the species response must be previously extracted to find real estimations of the species temperature optima and tolerance. The approaches to solving this problem may be the object of future investigation

    A Novel Laser-Based Zebrafish Model for Studying Traumatic Brain Injury and Its Molecular Targets

    Full text link
    Traumatic brain injury (TBI) is a major public health problem. Here, we developed a novel model of non-invasive TBI induced by laser irradiation in the telencephalon of adult zebrafish (Danio rerio) and assessed their behavior and neuromorphology to validate the model and evaluate potential targets for neuroreparative treatment. Overall, TBI induced hypolocomotion and anxiety-like behavior in the novel tank test, strikingly recapitulating responses in mammalian TBI models, hence supporting the face validity of our model. NeuN-positive cell staining was markedly reduced one day, but not seven days, after TBI, suggesting increased neuronal damage immediately after the injury, and its fast recovery. The brain-derived neurotrophic factor (Bdnf) level in the brain dropped immediately after the trauma, but fully recovered seven days later. A marker of microglial activation, Iba1, was elevated in the TBI brain, albeit decreasing from Day 3. The levels of hypoxia-inducible factor 1-alpha (Hif1a) increased 30 min after the injury, and recovered by Day 7, further supporting the construct validity of the model. Collectively, these findings suggest that our model of laser-induced brain injury in zebrafish reproduces mild TBI and can be a useful tool for TBI research and preclinical neuroprotective drug screening. © 2022 by the authors.Saint Petersburg State University, SPbU: 73026081; Russian Science Foundation, RSF: 20-65-46006We thank Alisa S. Belova for technical support in experimental manipulations and cortisol assay. We also thank Anatoly A. Maslov for the idea of using laser radiation to introduce brain damage. A.V.K. lab is supported by St. Peterburg State University funds (Pure ID 73026081).This study was funded by Russian Science Foundation (grant No. 20-65-46006)

    Motion artefact reduction of the photoplethysmographic signal in pulse transit time measurement

    No full text
    Motion artefact is a common occurrence that contaminates photoplethysmographic (PPG) measurements. To extract timing information from signals during artefact is challenging. PPG signal is very sensitive to artefacts and can be used in applications like, pulse transit time (PTT) as part of the polysomnographic studies. A correlation cancellation or signal processing approach is implemented with the adaptive cancelling filter concept and a triaxial accelerometry. PPG signals obtained from a Masimo (Reference) pulse oximeter is used as reference to compare with the reconstructed PPG signals. Different hands are used for each PPG source, one stationary while the other involves typical movements during sleep. A second Masimo pulse oximeter is used to register intensity of timing errors on commercial PPG signals. 108 PTT measurements are recorded in three different movements with PTT estimates from unprocessed PPG signals showing 35.51±27.42%, Masimo 50.02±29.40% and reconstructed 4.32±3.59% difference against those from the Reference PPG. The triaxial accelerometry can be used to detect the presence of artefact on PPG signals. This is useful in PTT measurements when signal contaminated with artefacts are required for further analysis, especially after and during arousals in sleep. The suggested filtering model can then reconstruct these corrupted PPG signals. Copyrigh
    corecore