4 research outputs found

    CTCF binds to sites in the major histocompatibility complex that are rapidly reconfigured in response to interferon-gamma

    Get PDF
    Activation of the major histocompatibility complex (MHC) by interferon-gamma (IFN−γ) is a fundamental step in the adaptive immune response to pathogens. Here, we show that reorganization of chromatin loop domains in the MHC is evident within the first 30 min of IFN−γ treatment of fibroblasts, and that further dynamic alterations occur up to 6 h. These very rapid changes occur at genomic sites which are occupied by CTCF and are close to IFN−γ-inducible MHC genes. Early responses to IFN−γ are thus initiated independently of CIITA, the master regulator of MHC class II genes and prepare the MHC for subsequent induction of transcription

    Widespread Expression of BORIS/CTCFL in Normal and Cancer Cells

    Get PDF
    BORIS (CTCFL) is the paralog of CTCF (CCCTC-binding factor; NM_006565), a ubiquitously expressed DNA-binding protein with diverse roles in gene expression and chromatin organisation. BORIS and CTCF have virtually identical zinc finger domains, yet display major differences in their respective C- and N-terminal regions. Unlike CTCF, BORIS expression has been reported only in the testis and certain malignancies, leading to its classification as a “cancer-testis” antigen. However, the expression pattern of BORIS is both a significant and unresolved question in the field of DNA binding proteins. Here, we identify BORIS in the cytoplasm and nucleus of a wide range of normal and cancer cells. We compare the localization of CTCF and BORIS in the nucleus and demonstrate enrichment of BORIS within the nucleolus, inside the nucleolin core structure and adjacent to fibrillarin in the dense fibrillar component. In contrast, CTCF is not enriched in the nucleolus. Live imaging of cells transiently transfected with GFP tagged BORIS confirmed the nucleolar accumulation of BORIS. While BORIS transcript levels are low compared to CTCF, its protein levels are readily detectable. These findings show that BORIS expression is more widespread than previously believed, and suggest a role for BORIS in nucleolar function

    Babies of South Asian and European ancestry show similar associations with genetic risk score for birth weight despite the smaller size of South Asian newborns

    No full text
    Size at birth is known to be influenced by various fetal and maternal factors, including genetic effects. South Asians have a high burden of low birth weight and cardiometabolic diseases, yet studies of common genetic variations underpinning these phenotypes are lacking. We generated independent, weighted fetal genetic scores (fGSs) and maternal genetic scores (mGSs) from 196 birth weight-associated variants identified in Europeans and conducted an association analysis with various fetal birth parameters and anthropometric and cardiometabolic traits measured at different follow-up stages (5-6-year intervals) from seven Indian and Bangladeshi cohorts of South Asian ancestry. The results from these cohorts were compared with South Asians in UK Biobank and the Exeter Family Study of Childhood Health, a European ancestry cohort. Birth weight increased by 50.7 g and 33.6 g per SD of fGS (P = 9.1 × 10-11) and mGS (P = 0.003), respectively, in South Asians. A relatively weaker mGS effect compared with Europeans indicates possible different intrauterine exposures between Europeans and South Asians. Birth weight was strongly associated with body size in both childhood and adolescence (P = 3 × 10-5 to 1.9 × 10-51); however, fGS was associated with body size in childhood only (P &lt; 0.01) and with head circumference, fasting glucose, and triglycerides in adults (P &lt; 0.01). The substantially smaller newborn size in South Asians with comparable fetal genetic effect to Europeans on birth weight suggests a significant role of factors related to fetal growth that were not captured by the present genetic scores. These factors may include different environmental exposures, maternal body size, health and nutritional status, etc. Persistent influence of genetic loci on size at birth and adult metabolic syndrome in our study supports a common genetic mechanism that partly explains associations between early development and later cardiometabolic health in various populations, despite marked differences in phenotypic and environmental factors in South Asians.</p
    corecore