25 research outputs found

    FLYWCH1, a Multi-Functional Zinc Finger Protein Contributes to the DNA Repair Pathway

    Get PDF
    Over recent years, several Cys2-His2 (C2H2) domain-containing proteins have emerged as critical players in repairing DNA-double strand breaks. Human FLYWCH1 is a newly characterised nuclear transcription factor with (C2H2)-type zinc-finger DNA-binding domains. Yet, our knowledge about FLYWCH1 is still in its infancy. This study explores the expression, role and regulation of FLYWCH1 in the context of DNA damage and repair. We provide evidence suggesting a potential contribution of FLYWCH1 in facilitating the recruitment of DNA-damage response proteins (DDRPs). We found that FLYWCH1 colocalises with ÎłH2AX in normal fibroblasts and colorectal cancer (CRC) cell lines. Importantly, our results showed that enforced expression of FLYWCH1 induces the expression of ÎłH2AX, ATM and P53 proteins. Using an ATM-knockout (ATMKO) model, we indicated that FLYWCH1 mediates the phosphorylation of H2AX (Ser139) independently to ATM expression. On the other hand, the induction of DNA damage using UV-light induces the endogenous expression of FLYWCH1. Conversely, cisplatin treatment reduces the endogenous level of FLYWCH1 in CRC cell lines. Together, our findings uncover a novel FLYWCH1/H2AX phosphorylation axis in steady-state conditions and during the induction of the DNA-damage response (DDR). Although the role of FLYWCH1 within the DDR machinery remains largely uncharacterised and poorly understood, we here report for the first-time findings that implicate FLYWCH1 as a potential participant in the DNA damage response signaling pathways

    Concise review: Emerging Drugs Targeting Epithelial Cancer Stem-like Cells

    Get PDF
    Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem‐like cell properties and which may be responsible for overall tumor maintenance. These cancer stem‐like cells (CSCs) appear to have unique tumor‐initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell‐derived cancers

    Repurposing Antibacterial AM404 as a Potential Anticancer Drug for Targeting Colorectal Cancer Stem-Like Cells

    Get PDF
    Tumour-promoting inflammation is involved in colorectal cancer (CRC) development and therapeutic resistance. However, the antibiotics and antibacterial drugs and signalling that regulate the potency of anticancer treatment upon forced differentiation of cancer stem-like cell (CSC) are not fully defined yet. We screened an NIH-clinical collection of the small-molecule compound library of antibacterial/anti-inflammatory agents that identified potential candidate drugs targeting CRC-SC for differentiation. Selected compounds were validated in both in vitro organoids and ex vivo colon explant models for their differentiation induction, impediment on neoplastic cell growth, and to elucidate the mechanism of their anticancer activity. We initially focused on AM404, an anandamide uptake inhibitor. AM404 is a metabolite of acetaminophen with antibacterial activity, which showed high potential in preventing CRC-SC features, such as stemness/de-differentiation, migration and drug-resistance. Furthermore, AM404 suppressed the expression of FBXL5 E3-ligase, where AM404 sensitivity was mimicked by FBXL5-knockout. This study uncovers a new molecular mechanism for AM404-altering FBXL5 oncogene which mediates chemo-resistance and CRC invasion, thereby proposes to repurpose antibacterial AM404 as an anticancer agent

    ATM Regulated PTEN Degradation Is XIAP E3 Ubiquitin Ligase Mediated in p85α Deficient Cancer Cells and Influence Platinum Sensitivity

    Get PDF
    Ataxia-telegiectasia mutated (ATM), phosphatase and tensin homolog (PTEN), and p85α are key tumour suppressors. Whether ATM regulates PTEN expression and influence platinum sensitivity is unknown. We generated ATM knockdowns (KD) and CRISPR knock outs (KO) in glioblastoma (LN18, LN229) and ovarian cancer cells (OVCAR3, OVCAR4). Doxycycline inducible PTEN expression was generated in LN18 and LN229 cells. Transient KD of p85α, CK2, and XIAP was accomplished using siRNAs. Stable p85α knock-in was isolated in LN18 cells. Molecular biology assays included proteasome activity assays, PCR, flow cytometry analysis (cell cycle, double strand break accumulation, apoptosis), immunofluorescence, co-immunoprecipitation, clonogenic, invasion, migration, and 3D neurosphere assays. The clinicopathological significance of ATM, PTEN, p85α, and XIAP (X-linked inhibitor of apoptosis protein) was evaluated in 525 human ovarian cancers using immunohistochemistry. ATM regulated PTEN is p85α dependant. ATM also controls CK2α level which in turn phosphorylates and stabilizes PTEN. In addition, p85α physically interacts with CK2α and protects CK2α from ATM regulated degradation. ATM deficiency resulted in accumulation of XIAP/p-XIAP levels which ubiquitinated PTEN and CK2α thereby directing them to degradation. ATM depletion in the context of p85α deficiency impaired cancer cell migration and invasion reduced 3D-neurosphere formation and increased toxicity to cisplatin chemotherapy. Increased sensitivity to platinum was associated with DNA double strand breaks accumulation, cell cycle arrest, and induction of autophagy. In ovarian cancer patients, ATM, PTEN, p85α, and XIAP protein levels predicted better progression free survival after platinum therapy. We unravel a previously unknown function of ATM in the regulation of PTEN throΌgh XIAP mediated proteasome degradation

    FLYWCH1, a novel suppressor of nuclear b-catenin, regulates migration and morphology in colorectal cancer

    Get PDF
    © 2018 American Association for Cancer Research. Wnt/b-catenin signaling plays a critical role during development of both normal and malignant colorectal cancer tissues. Phosphorylation of b-catenin protein alters its trafficking and function. Such conventional allosteric regulation usually involves a highly specialized set of molecular interactions, which may specifically turn on a particular cell phenotype. This study identifies a novel transcription modulator with an FLYWCH/Zn-finger DNA-binding domain, called "FLYWCH1." Using a modified yeast-2-hybrid based Ras-Recruitment system, it is demonstrated that FLYWCH1 directly binds to unphosphorylated (nuclear) b-catenin efficiently suppressing the transcriptional activity of Wnt/ b-catenin signaling that cannot be rescued by TCF4. FLYWCH1 rearranges the transcriptional activity of b-catenin/TCF4 to selectively block the expression of specific downstream genes associated with colorectal cancer cell migration and morphology, including ZEB1, EPHA4, and E-cadherin. Accordingly, overexpression of FLYWCH1 reduces cell motility and increases cell attachment. The expression of FLYWCH1 negatively correlates with the expression level of ZEB1 and EPHA4 in normal versus primary and metastatic colorectal cancer tissues in patients. Thus, FLYWCH1 antagonizes b-catenin/TCF4 signaling during cell polarity/migration in colorectal cancer. Implications: This study uncovers a new molecular mechanism by which FLYWCH1 with a possible tumor suppressive role represses b-catenin-induced ZEB1 and increases cadherin-mediated cell attachment preventing colorectal cancer metastasis

    An FBXW7-ZEB2 axis links EMT and tumour microenvironment to promote colorectal cancer stem cells and chemoresistance

    Get PDF
    Colorectal cancer (CRC) patients develop recurrence after chemotherapy owing to the survival of stem cell-like cells referred to as cancer stem-like cells (CSCs). The origin of CSCs is linked to the epithelial–mesenchymal transition (EMT) process. Currently, it remains poorly understood how EMT programmes enable CSCs residing in the tumour microenvironment to escape the effects of chemotherapy. This study identifies a key molecular pathway that is responsible for the formation of drug-resistant CSC populations. Using a modified yeast-2-hybrid system and 2D gel-based proteomics methods, we show that the E3-ubiquitin ligase FBXW7 directly binds and degrades the EMT-inducing transcription factor ZEB2 in a phosphorylation-dependent manner. Loss of FBXW7 induces an EMT that can be effectively reversed by knockdown of ZEB2. The FBXW7-ZEB2 axis regulates such important cancer cell features, as stemness/dedifferentiation, chemoresistance and cell migration in vitro, ex vivo and in animal models of metastasis. High expression of ZEB2 in cancer tissues defines the reduced ZEB2 expression in the cancer-associated stroma in patients and in murine intestinal organoids, demonstrating a tumour-stromal crosstalk that modulates a niche and EMT activation. Our study thus uncovers a new molecular mechanism, by which the CRC cells display differences in resistance to chemotherapy and metastatic potential

    SRPK1 maintains acute myeloid leukemia through effects on isoform usage of epigenetic regulators including BRD4.

    Get PDF
    We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML

    Prevention of diabetic nephropathy by high dose thiamine and benfotiamine : involvement of protein kinase C

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The streptavidin/biotinylated DNA/protein bound complex protocol for determining the association of c-JUN protein with NANOG promoter

    No full text
    Chromatin immunoprecipitation (ChIP) is a widely used and pre-eminent technique for detecting the association of an individual protein or a particular protein complex with its specific DNA sequence(s) in vivo. Herein we introduce a novel and simple biotinylated-oligonucleotide-mediated ChIP method for testing specific binding of the c-JUN protein to the M1-DNA-regulatory element in the NANOG promoter. We prepared a 260-bp DNA PCR amplicon containing -300 bp to -59 bp, relative to the transcriptional start site of the human NANOG gene, which was transfected into mouse embryonic fibroblasts (MEF) containing wild-type (c-jun(+/+)) or knockout c-jun (c-jun(-/-)) alleles. Whole cells that were cross-linked using formaldehyde and protein-DNA interactions were immunoprecipitated using streptavidin-coupled Dynabeads. Protein-DNA cross-links were reversed during incubation at 95°C, and protein samples were visualized using SDS-PAGE electrophoresis and western blotting. This streptavidin/biotinylated DNA/protein-bound complex protocol can be used for detecting the interactions between multiple transcription factors and their DNA binding sites
    corecore