121 research outputs found

    The brightest OH maser in the sky: a flare of emission in W75 N

    Full text link
    A flare of maser radio emission in the OH-line 1665 MHz has been discovered in the star forming region W75 N in 2003, with the flux density of about 1000 Jy. At the time it was the strongest OH maser detected during the whole history of observations since the discovery of cosmic masers in 1965. The flare emission is linearly polarized with a degree of polarization near 100%. A weaker flare with a flux of 145 Jy was observed in this source in 2000 - 2001, which was probably a precursor of the powerful flare. Intensity of two other spectral features has decreased after beginning of the flare. Such variation of the intensity of maser condensation emission (increasing of one and decreasing of the other) can be explained by passing of the magneto hydrodynamic shock across regions of enhanced gas concentration.Comment: 9 pages with 2 figures, accepted for publication in Astronomy Letter

    Clustered Star Formation in W75 N

    Get PDF
    We present 2" to 7" resolution 3 mm continuum and CO(J=1-0) line emission and near infrared Ks, H2, and [FeII] images toward the massive star forming region W75 N. The CO emission uncovers a complex morphology of multiple, overlapping outflows. A total flow mass of greater than 255 Msun extends 3 pc from end-to-end and is being driven by at least four late to early-B protostars. More than 10% of the molecular cloud has been accelerated to high velocities by the molecular flows (> 5.2 km/s relative to v{LSR}) and the mechanical energy in the outflowing gas is roughly half the gravitational binding energy of the cloud. The W75 N cluster members represent a range of evolutionary stages, from stars with no apparent circumstellar material to deeply embedded protostars that are actively powering massive outflows. Nine cores of millimeter-wavelength emission highlight the locations of embedded protostars in W75 N. The total mass of gas & dust associated with the millimeter cores ranges from 340 Msun to 11 Msun. The infrared reflection nebula and shocked H2 emission have multiple peaks and extensions which, again, suggests the presence of several outflows. Diffuse H2 emission extends about 0.6 parsecs beyond the outer boundaries of the CO emission while the [FeII] emission is only detected close to the protostars. The infrared line emission morphology suggests that only slow, non-dissociative J-type shocks exist throughout the pc-scale outflows. Fast, dissociative shocks, common in jet-driven low-mass outflows, are absent in W75 N. Thus, the energetics of the outflows from the late to early B protostars in W75 N differ from their low-mass counterparts -- they do not appear to be simply scaled-up versions of low-mass outflows.Comment: Astrophysical Journal, in press. 23 pages plus 10 figures (jpg format). See http://www.aoc.nrao.edu/~dshepher/science.shtml for reprint with full resolution figure

    Total linear polarization in the OH maser W75N: VLBA polarization structure

    Get PDF
    W75N is a star-forming region containing various ultracompact HII regions and OH, water, and methanol maser emission. Our VLBA map shows that the OH masers are located in a thin disk rotating around an O-star which is the exciting star of the ultracompact HII region VLA1. A separate set of maser spots is connected with the ultracompact HII region VLA2. The radial velocity of OH maser spots varies across the disk from 3.7 km/s to 10.9 km/s. The diameter of the disk is 4000 A.U. All maser spots are strongly polarized. This are the first OH masers showing nearly 100 per cent linear polarization in several spots. Two maser spots seem to be Zeeman pairs corresponding to a magnetic field of 5.2 mgauss and 7.7 mgauss, and in one case we tentatively found a Zeeman pair consisting of two linearly polarized components. The linearly polarized maser spots are shown to be sigma-components which is the case of the magnetic field being perpendicular to the line of sight. The direction of the magnetic field as determined from linearly polarized spots is perpendicular to the plane of the disk, although the galactic Faraday rotation may significantly affect this conclusion.Comment: 14 figures, 1 table, 27 pages. accepted for publication in ApJ, scheduled for v.564, N1, 200

    Identifying Biomarkers in Lymph Node Metastases of Esophageal Adenocarcinoma for Tumor-Targeted Imaging

    Get PDF
    INTRODUCTION: Tumor-targeted imaging is a promising technique for the detection of lymph node metastases (LNM) and primary tumors. It remains unclear which biomarker is the most suitable target to distinguish malignant from healthy tissue in esophageal adenocarcinoma (EAC). OBJECTIVE: We performed an immunohistochemistry study to identify viable tumor markers for tumor-targeted imaging of EAC. METHODS: We used samples from 72 patients with EAC to determine the immunohistochemical expression of ten potential tumor biomarkers for EAC (carbonic anhydrase IX [CA-IX], carcinoembryonic antigen [CEA], hepatic growth factor receptor, epidermal growth factor receptor, epithelial membrane antigen [EMA], epithelial cell adhesion molecule [EpCAM], human epidermal growth factor receptor 2 [HER-2], urokinase plasminogen activator receptor, vascular endothelial growth factor-A [VEGF-A], and VEGF receptor 2). Immunohistochemistry was performed on tissue microarrays of LNM (n = 48), primary EACs (n = 62), fibrotic tissues (n = 11), nonmalignant lymph nodes (n = 24), and normal esophageal and gastric tissues (n = 40). Tumor marker staining was scored on intensity and percentage of positive cells. RESULTS: EMA and EpCAM showed strong expression in LNM (> 95%) and primary EACs (> 95%). Significant expression was also observed for LNM and EAC using VEGF-A (85 and 92%), CEA (68 and 54%), and CA-IX (4 and 34%). The other tumor biomarkers showed expression of 0-15% for LNM and primary EAC. Except for VEGF-A, nonmalignant lymph node staining was scored as slight or absent. CONCLUSIONS: High expression rates and correlation between LNM in EAC combined with low expression rates in healthy lymph nodes and esophagus tissues were observed for EpCAM and CEA, meaning these are promising targets for tumor-targeted imaging approaches for lymph nodes in patients with EAC

    Observations of Massive Star Forming Regions with Water Masers: Mid-Infrared Imaging

    Full text link
    We present here a mid-infrared imaging survey of 26 sites of water maser emission. Observations were obtained at the InfraRed Telescope Facility 3-m telescope with the University of Florida mid-infrared imager/spectrometer OSCIR, and the JPL mid-infrared camera MIRLIN. The main purpose of the survey was to explore the relationship between water masers and the massive star formation process. It is generally believed that water masers predominantly trace outflows and embedded massive stellar objects, but may also exist in circumstellar disks around young stars. We investigate each of these possibilities in light of our mid-infrared imaging. We find that mid-infrared emission seems to be more closely associated with water and OH maser emission than cm radio continuum emission from UC HII regions. We also find from the sample of sources in our survey that, like groups of methanol masers, both water and OH masers have a proclivity for grouping into linear or elongated distributions. We conclude that the vast majority of linearly distributed masers are not tracing circumstellar disks, but outflows and shocks instead.Comment: 49 pages; 23 figures; To appear in February 2005 ApJS; To download a version with better quality figures, go to http://www.ctio.noao.edu/~debuizer

    Meiotic arrest occurs most frequently at metaphase and is often incomplete in azoospermic men

    Get PDF
    Objective: To establish which meiotic checkpoints are activated in males with severe spermatogenic impairment to improve phenotypic characterization of meiotic defects. Design: Retrospective observational study. Setting: University medical center research laboratory and andrology clinic. Patient(s): Forty-eight patients with confirmed spermatogenic impairment (Johnsen scores 3–6) and 15 controls (Johnsen score 10). Intervention(s): None. Main Outcome Measure(s): Quantitative assessment of immunofluorescent analyses of specific markers to determine meiotic entry, chromosome pairing, progression of DNA double-strand break repair, crossover formation, formation of meiotic metaphases, metaphase arrest, and spermatid formation, resulting in a novel classification of human meiotic arrest types. Result(s): Complete metaphase arrest was observed most frequently (27%), and the patients with the highest frequency of apoptotic metaphases also displayed a reduction in crossover number. Incomplete metaphase arrest was observed in 17% of the patients. Only four patients (8%) displayed a failure to complete meiotic chromosome pairin

    Full-Polarization Observations of OH Masers in Massive Star-Forming Regions: II. Maser Properties and the Interpretation of Polarization

    Full text link
    We analyze full-polarization VLBA data of ground-state, main-line OH masers in 18 massive star-forming regions previously presented in a companion paper. The OH masers often arise in the shocked neutral gas surrounding ultracompact Hii regions. Magnetic fields as deduced from OH maser Zeeman splitting are highly ordered, both on the scale of a source as well as the maser clustering scale of ~10^15 cm. Results from our large sample show that this clustering scale appears to be universal to these masers. OH masers around ultracompact Hii regions live ~10^4 years and then turn off abruptly, rather than weakening gradually with time. These masers have a wide range of polarization properties. At one extreme (e.g., W75 N), pi-components are detected and the polarization position angles of maser spots show some organization. At the other extreme (e.g., W51 e1/e2), almost no linear polarization is detected and total polarization fractions can be substantially less than unity. A typical source has properties intermediate to these two extremes. In contrast to the well ordered magnetic field inferred from Zeeman splitting, there is generally no clear pattern in the distribution of polarization position angles. This can be explained if Faraday rotation in a typical OH maser source is large on a maser amplification length but small on a single (e-folding) gain length. Increasing or decreasing Faraday rotation by a factor of ~5 among different sources can explain the observed variation in polarization properties. We suggest that almost all pi-components acquire a signficant amount of circular polarization from low-gain stimulated emission of a sigma-component from OH appropriately shifted in velocity and lying along the propagation path.Comment: AASTeX, 57 pages including 2 tables and 21 figures (1 color), accepted for publication in ApJ

    An overview of the cutaneous porphyrias

    Get PDF
    This is an overview of the cutaneous porphyrias. It is a narrative review based on the published literature and my personal experience; it is not based on a formal systematic search of the literature. The cutaneous porphyrias are a diverse group of conditions due to inherited or acquired enzyme defects in the porphyrin–haem biosynthetic pathway. All the cutaneous porphyrias can have (either as a consequence of the porphyria or as part of the cause of the porphyria) involvement of other organs as well as the skin. The single commonest cutaneous porphyria in most parts of the world is acquired porphyria cutanea tarda, which is usually due to chronic liver disease and liver iron overload. The next most common cutaneous porphyria, erythropoietic protoporphyria, is an inherited disorder in which the accumulation of bile-excreted protoporphyrin can cause gallstones and, rarely, liver disease. Some of the porphyrias that cause blistering (usually bullae) and fragility (clinically and histologically identical to porphyria cutanea tarda) can also be associated with acute neurovisceral porphyria attacks, particularly variegate porphyria and hereditary coproporphyria. Management of porphyria cutanea tarda mainly consists of visible-light photoprotection measures while awaiting the effects of treating the underlying liver disease (if possible) and treatments to reduce serum iron and porphyrin levels. In erythropoietic protoporphyria, the underlying cause can be resolved only with a bone marrow transplant (which is rarely justifiable in this condition), so management consists particularly of visible-light photoprotection and, in some countries, narrowband ultraviolet B phototherapy. Afamelanotide is a promising and newly available treatment for erythropoietic protoporphyria and has been approved in Europe since 2014
    • …
    corecore