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Meiotic arrest occurs most frequently
at metaphase and is often incomplete
In azoospermic men
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Objective: To establish which meiotic checkpoints are activated in males with severe spermatogenic impairment to improve phenotypic
characterization of meiotic defects.

Design: Retrospective observational study.

Setting: University medical center research laboratory and andrology clinic.

Patient(s): Forty-eight patients with confirmed spermatogenic impairment (Johnsen scores 3-6) and 15 controls (Johnsen score 10).
Intervention(s): None.

Main Outcome Measure(s): Quantitative assessment of immunofluorescent analyses of specific markers to determine meiotic entry,
chromosome pairing, progression of DNA double-strand break repair, crossover formation, formation of meiotic metaphases,
metaphase arrest, and spermatid formation, resulting in a novel classification of human meiotic arrest types.

Result(s): Complete metaphase arrest was observed most frequently (27%), and the patients with the highest frequency of apoptotic
metaphases also displayed a reduction in crossover number. Incomplete metaphase arrest was observed in 17% of the patients. Only four
patients (8%) displayed a failure to complete meiotic chromosome pairing leading to pachytene arrest. Two new types of meiotic arrest
were defined: premetaphase and postmetaphase arrest (15% and 13%, respectively).

Conclusion(s): Meiotic arrest in men occurs most frequently at meiotic metaphase. This arrest can be incomplete, resulting in low
numbers of spermatids, and often occurs in association with reduced crossover frequency. The phenotyping approach described here
provides mechanistic insights to help identify candidate infertility genes and to assess genotype-phenotype correlations in
individual cases. (Fertil Steril® 2019;112:1059-70. ©2019 by American Society for Reproductive Medicine.)

El resumen esta disponible en Espaiiol al final del articulo.
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point mechanisms during spermatogen-
esis. These should induce apoptosis of
aberrant germ cells. Meiosis is a particu-

larly risky subphase of spermatogenesis
because it involves induction and repair
of around 200 DNA double-strand breaks
(DSBs) that are required for proper chro-
mosome pairing and crossover formation
(1). In mouse and man, these DSBs are
marked by accumulation of phosphory-
lated histone H2AX (yH2AX) (2, 3),
resulting in a nucleus-wide spreading of
many overlapping patches of yYH2AX
signal upon immunostaining in early
meiotic prophase cells (leptotene and
zygotene). As DSB repair and chromo-

he quality of the haploid (epi)
I genome of a male germ cell

depends on the activity of check-
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some pairing progress, this signal
declines, and the synaptonemal complex
(the protein complex that connects the
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axes of chromosomes) forms (reviewed in Zickler and Kleckner
[1]). This process is called synapsis and can be followed by immu-
nolocalization of synaptonemal complex components such as
synaptonemal complex protein 3 (SYCP3), allowing the identifi-
cation of the different substages of meiotic prophase: leptotene,
zygotene, pachytene, and diplotene. When the synaptonemal
complex is completely formed, pachytene is reached. However,
the X and Y chromosome synapse only partially, due to lack of
homology in regions outside the so called pseudoautosomal re-
gion, and YH2AX concentrates on this DNA to facilitate forma-
tion of the transcriptionally silenced chromatin structure named
the XY body at the onset of pachytene (4, 5). In general, most of
the induced DSBs are repaired as noncrossovers, and only a
minority form crossovers (around 10%-20%, depending on the
species). During pachytene, crossovers are specifically marked
by accumulation of the mismatch repair protein MLH1 (6, 7).
At least one crossover per chromosome pair is required to
ensure proper segregation of chromosomes at the first meiotic
metaphase-to-anaphase transition (1). Once the cells reach meta-
phase, chromosomes accumulate phosphorylation of histone H3
at serine 10 (H3S10ph), and this marker can be used to identify
cells at this relatively brief stage (8).

Several meiotic checkpoints that operate during sper-
matogenesis have been described for mice (9-14). First, the
so-called pachytene checkpoint eliminates spermatocytes
in which chromosome synapsis is incomplete, and this is
functionally coupled to a failure to form the XY body in
male mice (14). In addition, a second checkpoint operates
during pachytene, sensing DNA damage (15, 16). If repair
and chromosome pairing occur normally, the next
checkpoint ensures correct segregation of chromosomes at
the metaphase-to-anaphase transition. This spindle assem-
bly checkpoint (SAC) functions in both mitosis and meiosis
and senses correct attachment of each chromosome to the
spindle. Anaphase only occurs after the SAC is satisfied
(11, 17-19).

In infertile men, occurrence of meiotic arrest phenotypes
has been described, and estimations of the percentage of
oligo- or azoospermic patients with meiotic arrest vary be-
tween 10% and 30% (20-28). In addition, detailed analyses
of different meiotic parameters, such as progression of
chromosome pairing and crossover formation, have been
performed in such patients (3, 21, 29-31). More recently,
RNA sequencing analyses have also been wused to
characterize a small group of selected azoospermic patients
(32). However, in general, arrest phenotypes in azoospermic
or severely oligospermic men remain poorly characterized
and very few genetic causes of nonobstructive azoospermia
in men (often involving consanguinous families) have been
identified (33-36).

Here we aimed to obtain more insight into the types,
frequency, and completeness of meiotic arrest in men dis-
playing severe spermatogenic impairment. We hypothesize
that if spermatogenic impairment is caused by genetic fac-
tors, this will often lead to specific activation of one of the
above-described meiotic checkpoints and associated spe-
cific types of meiotic arrest. To assess meiotic arrest in rela-
tion to checkpoint activation, we set out to validate protein
markers that could be used for reliable identification of

cells arrested at different stages of spermatogenesis by
immunofluorescent staining of paraffin-embedded testis
biopsy samples.

MATERIALS AND METHODS

Patient Inclusion and Genetic and Pathological
Results

This study used remnant paraffin-embedded testis biopsy ma-
terial from azoospermic or severely oligospermic patients or
from patients for whom testicular malignancy was suspected.
Material was collected from 462 patients between 2001 and
2013. The testis biopsies had been fixed in 4% paraformalde-
hyde and embedded in paraffin. In these biopsies, the pathol-
ogy laboratory routinely analyzes histological patterns and
uses the quantitative histological grading system developed
by Johnsen (37) to assess spermatogenesis. In brief, the level
of sperm maturation is graded between 1 and 10, according
to the most advanced germ cell in the tubule, in at least 100
seminiferous tubules. Analyses of AZF deletions and/or com-
mon CFTR mutations and/or karyotyping were performed as
described (38).

Surplus fixed biopsy samples were selected for the current
analysis, and we excluded the sample when [1] a malignancy
was reported in the biopsy, [2] the patient was known to carry
sex chromosome aberrations, [3] routine Johnsen score (JS)
(37) assessment was lacking and there was also no mention
of “maturation arrest” by the pathologist, and [4] no leftover
material was available.

Ethics Approval

The use of surplus tissue samples was approved by the local
Institutional Review Board of the Erasmus MC Rotterdam
(METC 02.981). This included the permission to use the sec-
ondary tissue without further consent. Samples were used ac-
cording to the Code for Proper Secondary Use of Human
Tissue in The Netherlands developed by the Dutch Federation
of Medical Scientific Societies (FMWYV, http://www.federa.
org/, version 2002, update 2011). This is a retrospective study
that was anonymized.

Fluorescent Imnmunohistochemistry

Testis biopsies were sectioned (6 um) and placed on a drop of
demineralized H,0 (dH,0) on slides (Starfrost). After stretch-
ing the sections on a heating plate at 39°C, slides were dried
overnight at 37°C. Subsequently, slides were placed at 60°C
for 1 hour. Then the slides were dewaxed and rehydrated as
follows: 3 x 5 minutes xylene, 3 x 5 minutes 100% ethanol,
and 3 x 5 minutes phosphate-buffered saline (PBS). The slides
were then incubated for 15 minutes in Proteinase K in PBS
(1 ug/mL). This was followed by washing steps with dH,0 (4
X 2 minutes) and an incubation with terminal deoxynucleo-
tidyl transferase buffer (0.1 M Na-cacodylate, pH 6.8,
1.0 mM CoCl, 0.1 mM DTT) for 30 minutes in a humid chamber.
Subsequently, the slides were washed 3 x 5 minutes with TB
buffer (300 mM NaCl, 30 mM tri-sodiumcitrate-dihydrate in
dH,0) and 3 x 5 minutes with dH,0. Thereafter, an epitope
retrieval step was performed with sodium citrate buffer pH 6
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(1 mM trisodium citrate [dihydrate]) + 0.05% (v/v) Tween 20
(Sigma-Aldrich) in a microwave at maximum power (1 x
10 minutes, 2 x 5 minutes, whereby after each microwave in-
cubation period, the initial volume was restored by adding
dH?0). The slides were cooled down to room temperature in
the sodium citrate buffer for 1 hour and washed with PBS (3
x 5 minutes). Blocking was performed by incubating the sec-
tions in 10% normal goat serum and 5% bovine serum albu-
min (BSA) diluted in PBS, in a humid chamber for
30 minutes at room temperature. When we used dual fluores-
cent staining, we performed sequential immunostaining
rounds for each primary antibody and its associated second-
ary, fluorescent-tagged antibody, to reduce the risk of second-
ary antibody cross reaction. Thus, in the first round, the first
primary antibody (diluted in 5% BSA/PBS) was added to the
sections, and the slides were incubated in a humid chamber
at 4°C overnight. The second day, the slides were kept at
room temperature for 1 hour and then washed 3 x 5 minutes
with PBS. Subsequently, the appropriate secondary antibody
(diluted in PBS) was added and the slides were incubated for
1.5 hours in a humid chamber at room temperature. After
washing (3 x 5 minutes) in PBS, incubation with the second
primary antibody in 5% BSA/PBS followed overnight. On
the third day, we repeated the steps for addition of the appro-
priate secondary antibody for the most recently added primary
antibody to allow detection of the associated antigen. Finally,
slides were washed 3 x 5 minutes in PBS and mounted using
Prolong Gold Antifade reagent with DAPI.

Antibodies

Rabbit polyclonal anti-SYCP3 (noncommercial antibody
described in Lammers et al. [39]) at 1:10,000, mouse mono-
clonal anti-MLH1 (cat. 551091, BD Pharmingen) at 1:25,
mouse polyclonal anti-yH2AX at 1:10,000 (Millipore, 05-
636), rabbit polyclonal anti-H3Ser10ph at 1:1,000 (06-570,
Millipore), and mouse acrosome-specific antibody at 1:100
(noncommercial antibody described in Moore et al. [40])
were used. For secondary antibodies, we used goat anti-
rabbit alexa 488 IgG and goat anti-mouse alexa 546 IgG
(A-11008 and A-11003, respectively; Invitrogen), both at
1:500 dilution.

Analyses of Fluorescent Inmunostainings of
Human Testis Biopsy Sections

Quantitative analyses of meiotic entry, XY body formation,
and spermatid formation were performed at 200x or
1,000x magnification on an Axioplan 2 Carl Zeiss fluores-
cence microscope, equipped with a digital camera (Cool-
snap-Pro; Photometrics). Only round tubules were scored
(defined as tubules whereby the longest and shortest diameter
differed by less than two-fold). A minimum of 50 random
round tubules was evaluated per patient. On samples stained
with anti-yH2AX and anti-H3ser10ph the number of tubules
that contained at least one early cell was counted to determine
the percentage of early cell positive tubules (1,000 x magnifi-
cation, EC+T). The same analysis was performed for the XY
body, to determine the percentage of XY body positive tubules
(200x magnification, XY+T). In addition, the number of XY

Fertility and Sterility®

bodies per XY body-positive tubule was assessed at 1,000x
maghnification. The percentage of tubules that contain sper-
matids and the most advanced spermatid stage reached
were determined on slides immunostained with the
acrosome-specific antibody (1,000 x magnification, SPT+T).

Quantitative analyses of (apoptotic) metaphases were per-
formed using a 63x oil immersion Plan-Apochromat objec-
tive, Zeiss LSM700 confocal microscope equipped with a
digital camera (Axiocam MRm Rev.3 1388X1040). To obtain
the percentage of apoptotic metaphases, all metaphases in a
section were scored on samples stained with anti-yH2AX
and anti-H3ser10ph and classified as apoptotic if they were
also clearly positive for YH2AX immune signal (bright green
signal; care was taken to ensure separation of the red fluores-
cent signal (H3S10ph, alexa 546) from the green fluorescent
signal (YH2AX, alexa 488). The total number of metaphases
was normalized to the area analyzed (metaphases/mm?), and
the percentage of apoptotic metaphases was also calculated.

For counting MLH1 foci, Z-stacks from at least five
different spermatocytes were made per patient (63 x objective
and 5x digital zoom). These Z-stacks were merged into two-
dimensional images (maximum projection). The number of
MLH1 foci was counted using the “Find Maxima” function
of the Image J software (41). The noise tolerance was set
manually. For each patient the average number of MLH1
foci per spermatocyte was then calculated.

Threshold Calculations

To establish baseline frequencies of tubule cross sections con-
taining cells at a specific spermatogenic stage, we determined
the normal range in our control samples for the following var-
iables: percentage early cell positive tubules (%EC+T), per-
centage XY body positive tubules (%XY+T), the number of
XY bodies per XY body positive tubule (XY/XY+T), the num-
ber of metaphases/mm?, the percentage of metaphases that
show apoptosis, and the number of MLH1 foci per nucleus.
The values observed for each variable in control patients
were averaged, and the SDs were calculated. The normal
range was determined using the mean + 2 SD (95% confi-
dence interval), which then served as threshold values. For
9%EC+T and %XY+T, the lowest control value was not inside
the 95% confidence interval, and in these cases, this lowest
control value was used as the threshold, since a Grubb’s test
did not classify these as outliers. Finally, an additional
threshold for the number of metaphases/ mm? was established
by calculating the mean and SD values from the patients for
whom no XY bodies were observed (groups I and II); then
we set the minimal threshold value for reaching meiotic meta-
phases at this mean +2 SD. Table 1 shows an overview of
mean values and normal ranges. In all cases, absence of
more advanced stages indicated cell arrest at or around the
most advanced spermatogenic stage that still could be
observed.

RESULTS
Patients

From 307 patients included in this study (see Materials and
Methods for criteria), 74 (24%) were assigned a JS below 3,
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TABLE 1

Mean values and normal range of meiotic parameters.
Quantitative parameter

% of tubules containing cells in early meiotic prophase
% of tubules containing XY body-positive nuclei

No. of XY body—positive nuclei/XY body—positive tubule
No. of metaphases/mm?

Minimal metaphases/mm? for meiotic metaphases

% of apoptotic metaphases

No. of MLH1 foci

Note: SD = standard deviation.
2 Threshold corresponds to the lowest value in controls (no outlier).
b Value based on mean + 2 SD metaphases/mm? in group | and group Il patients.

Enguita-Marruedo. Meiotic metaphase arrest in men. Fertil Steril 2019.

48 (16%) patients had JS 3-6, 67 (22%) had JS 7-8, 35 (119%)
displayed variability of >2 in JS between left and right testis
biopsy, and 83 (27%) had JS 9-10. The 48 patients with JS 3-6
(including four patients for whom no JS was available but
maturation arrest was indicated by the pathologist) were
selected (see Supplemental Table 1 for available information).
In addition, 15 patients with JS 10 were randomly chosen and
used as controls. In total, 35 of the selected patients and
controls (JS 3-6 and JS 10, respectively) had also been
analyzed for AZF deletions and/or common CFTR mutations
and/or karyotype. Aberrations were found in five JS 3-6 pa-
tients: a pericentric inversion in chromosome 1 (P13;
46,XY,inv(1)(p21q32.1)), a balanced translocation between
the long arm of the Y-chromosome and the long arm of chro-
mosome 19 (P35; 46,X,t(Y;19)(q12;q13.3)), two AZFc (DAZ)
deletions (P10 and P17), and a heterozygote carrier of a
CFTR mutation (P41 (R117H/7T)). From the group of the JS
10 controls, one had been analyzed for genetic aberrations,
and this patient (C13) carried two CFTR mutations: 1717-
1G>A and Q1476X, most likely explaining the obstructive
azoospermia in this patient.

Validation of Protein Markers and Classification of
Meiotic Arrest Patients

We optimized an immunofluorescent staining protocol (see
Materials and Methods for details) to assess meiotic progres-
sion in archived paraffin-embedded and formaldehyde-fixed
biopsy material. We used a double immunostaining of anti-
phosphorylated H2AX (yH2AX) and anti-phosphorylated
H3 (H3Ser10ph) to assess whether checkpoint activation
and associated arrest occurred in the JS 3-6 patients:
vYH2AX, marking meiotic DSBs and the XY body, was used
to verify entry into meiosis, progression of DSB repair, and
XY body formation (as a proxy for completion of synapsis
and repair). These are important parameters to assess activa-
tion of the two pachytene checkpoints. Figure 1A shows
low-magnification overviews of part of a tubule section con-
taining early spermatocytes (leptotene and zygotene, marked
by the presence of multiple yYH2AX patches) and a section
containing pachytene nuclei with a clear XY body. In addi-
tion, H3Ser10ph immunostaining was used to identify
M-phase cells, and metaphases were identified by the combi-

Mean = SD value in controls

Normal range/thresholds

832+ 18.6 100-43.9°

96.5 £ 4.5 100-82.6°

202 £6.2 32.6-7.74

7.54+2.5 12.54-2.53
>1.83°

46+34 0-11.5

40.8 +5.8 52.4-29.3

nation of this signal with a metaphase plate appearance of the
DNA (visualized by DAPI staining; Fig. 1B). Occasionally,
metaphases also displayed intense YH2AX signal along the
condensed chromosomes. Since this type of panchromosomal
yYH2AX staining has been described as a hallmark of cells
entering apoptosis (42), we classified these aberrant meta-
phases as apoptotic (Fig. 1B, apoptotic metaphase). This
proved to be a very useful parameter to identify patients
with a meiotic metaphase arrest (see below).

Round, elongating, and condensing spermatids could be
reliably observed at low magnification using an antibody
that labels the acrosome, in combination with the DAPI signal
(Fig. 1C), and five subtypes were identified using higher
magnification (Supplemental Fig. 1A). Similarly, substages
of meiotic prophase could also be more clearly distinguished
at higher magnification, based on the pattern of yH2AX
staining (Supplemental Fig. 1B).

We quantified meiotic entry, XY body formation, and
(apoptotic) metaphases for the patients and controls. In addi-
tion, the presence and most advanced type of spermatids were
scored. We set thresholds for each parameter (Fig. 1D-1G,
Table 1) as described in Materials and Methods and inter-
preted the results by developing a decision tree (Fig. 1H). First,
we verified whether spermatogenesis progressed up to forma-
tion of meiotic DSBs (presence of early spermatocytes,
Fig. 1A, 1D). If this was not the case, arrest is likely to be pre-
meiotic, or very early meiotic, with a failure to induce meiotic
DSBs (group I). The next step was to determine whether
pachytene was reached as evidenced by XY body formation,
the hallmark of completion of both synapsis and DSB repair
(Fig. 1A, 1E). If XY bodies were not detected, this would indi-
cate activation of one of the two pachytene checkpoints, and
these patients were classified as group II. After assessing the
metaphase density in the whole patient group, we observed
a clear positive correlation between the number of meta-
phases/mm? and the number of XY bodies per XY+T (R? =
0.35; P<.0001; Fig. 1F), confirming that formation of an
XY body is a prerequisite for metaphase entry. For group I
and II patients, all observed metaphases are expected to be
of mitotic origin. Thus, the values obtained for these two
groups of patients (group I: failure to enter meiosis; and group
II: failure to form the XY body) were used to define a threshold
of 1.83 metaphases/mmz, above which we consider additional
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metaphases to be of meiotic origin (Table 1 and Supplemental
Table 1). We identified eight patients that displayed a meta-
phase density below this threshold. These patients also dis-
played a reduced capacity to reach pachytene (Fig. 1F,
brown dots). For one of these patients, P46 (Fig. 1F, green
dot), we detected occasional spermatids in 38% of the tubules;
Supplemental Table 1), indicating that some cells were still
able to proceed through metaphase I and complete meiosis.
This patient was therefore classified as showing no arrest
(group VII). No spermatids were detected in the other seven
patients, and these were therefore classified as having a pre-
metaphase arrest (group III).

Next we assessed for the rest of the patients whether the
percentage of apoptotic meiotic metaphase cells was
increased compared with the normal range we established
in the control group (Table 1, Fig. 1G), and used this as mea-
sure of meiotic metaphase arrest. We then used the absence or
presence of spermatids in the tubules to classify these patients
as having a complete metaphase arrest (group IV) or an
incomplete metaphase arrest (group V). We also observed
that some patients did not show any sign of known check-
point activation, but where spermatids were completely lack-
ing, we classified these as postmetaphase arrest (group VI). In
the remaining patients we observed spermatids and no indica-
tions of checkpoint activation and classified these as no arrest
(group VII).

The frequencies of patients classified in each group is
shown in Figure 11, and typical examples of immunostaining
patterns for each class are shown in Supplemental Figure 2.
Only four cases (8%) displayed complete activation of the
pachytene checkpoints (failure to form the XY body, group
IT), while 449% displayed complete (27%, group IV) or partial
metaphase arrest (17%, group V), likely due to activation of
the SAC. In addition to the previously described pachytene
and metaphase arrests, we were able to define two additional
types of arrest: premetaphase and postmetaphase arrest (15%
[group 1] and 13% [group VI], respectively). More detailed
descriptions of the criteria and specific aspects of the pheno-
types are outlined below for each group.

Meiotic Entry

The vast majority of patients displayed normal percentages of
tubules with early spermatocytes (%ES+T; Fig. 1D,
Supplemental Table 1). The single group I patient (P10, dark
blue dot in Fig. 1D) was one of the two patients that carried
an AZFc deletion. Two patients (P4 and P18) showed a reduc-
tion in %ES+T, based on the set normal range (Fig. 1D, light

<

blue dots). Based on the other assessed parameters, and
following the decision tree, these were subsequently classified
into group IV and V, respectively (Supplemental Table 1).

XY Body Formation and Activation of Pachytene
Checkpoint

In line with a failure to enter meiosis, no tubules containing
XY bodies were found in the group I patient with no meiotic
entry (P10). Four additional patients displayed a complete
lack of XY bodies (Fig. 1E, red dots), and thus their spermato-
cytes were unable to reach the pachytene stage normally. This
indicates activation of either the synapsis-dependent or DSB
repair-dependent pachytene checkpoint (group II). Further
analysis of meiotic prophase in the four patients with pachy-
tene arrest revealed that the spermatocytes of P3 and P33
entered meiotic prophase normally, but groups of cells ar-
rested at leptotene or early zygotene. In contrast, only isolated
early spermatocytes where detected in P7 and P25, but these
appeared to have progressed further into zygotene, based on
the pattern of yH2AX (Fig. 2A, 2B).

Twenty-nine patients scored below the normal range of
percentage of XY body-positive tubules (XY+T; Fig. 1E,
pink dots, and Supplemental Table 1). To obtain a more sen-
sitive assessment of the efficiency of progression to pachy-
tene, independent of meiotic entry, we also assessed the
number of XY bodies per XY+T. This parameter showed a
strong positive correlation to the percentage of XY+T as ex-
pected (R* = 0.53; P<.0001; Fig. 2C). In patients with a
reduced number (<7.7) of XY bodies per XY+T, spermato-
cytes reach pachytene with reduced efficiency. This points
to cell loss at some point between meiotic entry and
pachytene.

Meiotic Metaphase and Activation of the SAC

Other than a reduced capacity to reach pachytene (Fig. 1F and
Fig. 2C), we observed no specific aberrant feature that could
explain the failure to reach meiotic metaphase for group III
patients, except for spermatocytes of P44, which often dis-
played panchromosomal YH2AX staining (Fig. 2D). As
described above for the apoptotic metaphases, this is a hall-
mark of apoptosis and provides an explanation for the loss
of spermatocytes in this patient.

Twenty-one patients displayed an increased percentage
of apoptotic metaphases compared with controls (Fig. 1G),
indicating frequent activation of the SAC, leading to
apoptosis. Most of these patients also displayed a reduced

Quantitative assessment of progression of meiosis in paraffin-embedded testis sections. (A) Immunostaining of early meiotic prophase and
pachytene spermatocytes (control sample). (B) Normal (control patient) and apoptotic (patient displaying metaphase arrest) metaphase nuclei.
(€) Spermatids (control sample). Magnifications of the indicated late zygotene (LZ) and pachytene (XY) nucleus are shown in Supplemental
Figure 1B. Scale bar, 10 um. (D) Percentage of tubules that contain early spermatocytes and (E) percentage of tubules that contain XY bodies
in controls and JS 3-6 patients. The dark blue dot in panel D indicates the group | patient, and light blue dots indicate patients with values
below the threshold. Red dots in panel E indicate group Il patients, and pink dots indicate JS 3—6 patients with values below the threshold. (F)
Correlation between the number of XY bodies per XY+T and the number of metaphases/mm? (P<.0001). Dark brown dots indicate group il
patients, and the green dot indicates one group VII patient with a value below the threshold for reaching meiotic metaphase. (G) Further
classification of patients depending on the percentage of apoptotic metaphases and the presence/absence of spermatids. Color codes as
indicated. (H) Decision tree for the classification of patients; percentages and colors correspond to the pie diagram shown in panel I.
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Efficiency of XY body formation and aberrations in yH2AX pattern in spermatocytes of group I, lll, IV, and VI patients. (A and B) Aberrations in the
yH2AX pattern (green staining) in samples of patients displaying failure to form the XY body (pachytene arrest, group II). Intriguingly, the
spermatocyte nuclei of P25 were half the size of the nuclei observed in the other three patient biopsies in this group. This could indicate a gross
alteration in nuclear/chromatin structure in the spermatocytes of this patient, but fixation artefacts cannot be excluded. (C) Positive correlation
between the percentage of tubules with XY bodies and the number of XY bodies per XY+T. Red dots (four on top of each other) indicate
group Il patients; pink dots and brown dots (all group Il patients) are patients for whom both parameter values were below the threshold; pink
dots with dark gray outlines represent values whereby only the number of XY bodies per XY+T was reduced; and dark gray dots with pink
outlines only display a reduced percentage of tubules with XY bodies. Dark gray dots represent all JS 3-6 patients who displayed values within
the normal range for both parameters, and light gray dots represent the controls. (D) Representative images of aberrant yH2AX staining in
samples of P44 (group Ill, premetaphase arrest), P9 (group IV, complete metaphase arrest), P40 (group 1V), P13 (group IV), and P42 (group VI,
postmetaphase arrest). Pannuclear staining is observed for P44, P9, and P42. Spermatocytes of P40 display many persistent small patches of
yH2AX staining. For three other group IV patients (P13, P14, and P24) we often observed abnormal XY bodies or two (or more) yH2AX-positive
XY body-like structures (see also Supplemental Fig. 3). For P13 (46,XY,inv(1)(p21932.1)) shown here, the presence of an extra XY body-like
yYH2AX domain most likely represents an incompletely synapsed bivalent of chromosome 1 (due to the inversion), in addition to a normal XY
body. Scale bars, 10 um.
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percentage of tubules with XY bodies and/or a reduced num-
ber of XY bodies per XY+T, but no significant correlation be-
tween either of these two parameters and the percentage of
apoptotic metaphases was observed (WXY+T, R*> =
0.00647, P=.6411; XY bodies/XY+T, R*> = 0.00729,
P=.6205). The most advanced spermatid types present in bi-
opsies of patients with partial metaphase arrest (group V) were
mostly early spermatids (type 2 or 3). Thus, when the SAC is
frequently activated, the few cells that are able to proceed
through metaphase are likely to fail in completing spermato-
genesis normally.

Similar to P44 of group III (failure to reach metaphase), P9
of group IV (complete metaphase arrest) also displayed pan-
chromosomal yYH2AX staining indicating apoptosis in sper-
matocyte cells that were pre-M phase (Fig. 2D). For P40,
also of group IV, frequent occurrence of multiple small
patches of YH2AX in spermatocytes indicated problems in
completing meiotic DNA DSB repair in (Fig. 2D). In addition,
for group IV patients P13, P14, and P24 we often observed an
extra XY body-like yYH2AX signal in pachytene spermato-
cytes, which would indicate more localized chromosome
pairing problems (Fig. 2D, and Supplemental Fig. 3). P13
indeed carried a large inversion in chromosome 1
(46,XY,inv(1)(p21q32.1)), but for the others karyotyping did
not reveal chromosome aberrations. No such atypical
vYH2AX signals were detected in group V patients. From the
six patients in group VI (postmetaphase arrest) we observed
apoptotic nuclei in only one (P42; Fig. 2D), and no other aber-
rant features explaining the lack of spermatids could be
observed in the other patients in this group.

Complete Metaphase Arrest and Crossover
Frequency

Lack of crossover formation is a well-known trigger for SAC
activation in mouse spermatocytes (43). To assess crossover
frequency in group IV (complete metaphase arrest) patients,
we used antibodies against MLH1 (marker of crossover sites
at pachytene) (36) and SYCP3 (marker of the chromosomal
axes; Fig. 3A, 3B). Two patients were excluded from the anal-
ysis, since staining for MLH1 and SYCP3 was unsuccessful.
Four patients, including the three patients for whom we
observed multiple XY body-like structures (P13, P14, and
P24, Supplemental Fig. 3), displayed a reduced mean number
of MLH1 foci (mean value range, 10-27) compared with con-
trols (40.8 + 5.8; Fig. 3B). We observed a negative correlation
between the percentage of apoptotic metaphases and the
mean number of MLH1 foci (R? = 0.32; P=.014; Fig. 3Q).

DISCUSSION
Metaphase Arrest Is the Most Frequent Type of
Male Meiotic Arrest

Herein we have shown that the metaphase checkpoint is more
frequently uniformly activated than the pachytene check-
point. This is in contrast to observations in the mouse, where
knockout of genes expected to exert meiotic prophase-
specific functions most frequently results in activation of
one or both of the two pachytene checkpoints (9, 44).

Examples are genes required for DSB formation (Spoll,
Mei4) (45-47), for meiotic DSB repair (Dmc1, Msh4, Msh5,
Meiob) (48-51), andfor for chromosome pairing
(synaptonemal complex or cohesin components: Sycpl,
Syep2, Sycp3, Smclb, and more) (52-54). Therefore, such
genes might be mutated in patients displaying failure to
form XY bodies. In a recent detailed study of 10
azoospermic men (32), two types of male meiotic prophase
arrest were proposed, based on the absence (type I) or
presence (type II) of the XY body. However, meiotic
metaphase was not analyzed in this study. Since the type II
patients were described to display aberrations in the
expression of cell cycle genes (32), it could be worthwhile to
assess whether spermatocytes in these patients might also
arrest at metaphase instead of at prophase.

Metaphase arrest in mice has been observed mainly when
crossover formation was affected. Mutation of genes such as
Milh1 (6, 55) and Rnf212 (56) almost completely abolish
crossover formation. Mutation of Shocl (57) or of the
X-linked Tex11 gene (58) leads to a somewhat more subtle
and variable reduction in the number of crossovers (~19%
for Shocl and ~30% for Tex11), but still in combination
with complete metaphase arrest. Mutations in TEXI11 have
also been reported in a small percentage of men diagnosed
with a meiotic arrest phenotype (59, 60). These four genes
would be interesting candidates to screen for mutations in
patients displaying metaphase arrest in combination with a
reduction in MLH1 foci.

Still, crossover frequency was normal in most patients
displaying complete metaphase arrest in this study. In these
cases, alterations in other proteins involved in the
metaphase-anaphase transition or functioning in cell cycle
regulation may cause the observed arrest. In addition, a
mild reduction in the number of crossovers (e.g., lack of the
obligate crossover in the pseudoautosomal region of the XY
pair), which would not result in a significant decrease in
crossover frequency, could still trigger metaphase arrest in
some of the patients.

Two of the patients whom we analyzed were carriers of an
AZFc deletion. These patients are known to present variable
phenotypes (ranging from Sertoli cell only to oligozoosper-
mia) (61). In our analyses, one patient (P10) displayed failure
of meiotic entry, and the other (P17) a complete metaphase ar-
rest, confirming this variability.

Premetaphase and Postmetaphase Arrest: Novel
Checkpoints or Necrosis?

In 15% of the testis biopsies we observed an arrest before
meiotic metaphase (group III). Similar defects are observed in
mice lacking HspaZ'/' (62), ReproS'/' (63), Cyclin A1 (64), or
Rpl10l, a testis-specific retrogene present in all eutherians
(65). It is not known whether this lack of cells at meiotic meta-
phase I involves activation of a specific checkpoint or a
collapse of the developmental potential of the cells after entry
into meiotic prophase. Our patients in group III also displayed
reduced XY body formation, indicating clear problems in
reaching pachytene in addition to a failure to reach metaphase.
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Postmetaphase arrest (group VI) could involve some form
of cell death within a short period between the first meiotic di-
vision and early spermatid stages. Early spermatid arrest oc-
curs in mice in which the expression of the transcription
factor CREMtau has been disrupted (66). Mutation of ZFY
could also be suspected as a cause of the failure to develop
further than the meiotic divisions. In mice, Zfy1 and Zfy2 pro-
mote completion of meiosis II (67). In men, there is a single
ZFY gene (68).

Since apoptotic nuclei were observed in the biopsies of
only few group Il and group VI patients, activation of an
(apoptotic) pathway not involving pannuclear yH2AX forma-
tion (like necroptosis or necrosis) may explain the rapid loss of
cells in those patients. In addition, or alternatively, malfunc-
tioning cells may detach from the Sertoli cells, followed by
sloughing into the lumen, as was previously reported for
certain mouse models (69).

In conclusion, the double immunostaining with anti-
vH2AX and anti-H3S10ph in combination with the decision
tree we developed here is a highly feasible approach to diag-
nose meiotic arrest phenotypes in azoospermic men. Our
approach can distinguish between failure in chromosome
pairing/DSB repair and failure in the metaphase to anaphase
transition. Metaphase arrest was defined as the most frequent
type of meiotic arrest. Uniform activation of meiotic check-
points suggests a genetic cause of spermatogenic arrest.
Thus, this technique can also be used as a tool to preselect pa-
tients for sequencing in the search for infertility genes.

For men with nonobstructive forms of severe oligozoo-
spermia and azoospermia, intracytoplasmic sperm injection
can be used for fertility treatment, if viable spermatozoa or
even spermatids can be retrieved after testicular sperm extrac-
tion (70, 71). If partial activation of meiotic checkpoints is
observed in such patients, further research is recommended
to determine whether the surviving gametes have increased
frequencies of (epi)genetic aberrations before using them for
infertility treatment.

Acknowledgments: The authors acknowledge the contri-
butions of Prof. Dr. J. A. Grootegoed, Developmental Biology,
Erasmus MC Medical Center, Rotterdam; the support during
the initial phase of the project from Prof. Dr. J. Gribnau,
Developmental Biology, Erasmus MC Medical Center, Rotter-
dam; and the advice of Dr. H. Bruggenwirth, Clinical Genetics,
Erasmus MC Medical Center, Rotterdam.

REFERENCES

1. Zickler D, Kleckner N. Recombination, pairing, and synapsis of homologs
during meiosis. Cold Spring Harbor Perspect Biol 2015;7:a016626.

2. Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, Blanco-
Rodriguez J, et al. Recombinational DNA double-strand breaks in mice pre-
cede synapsis. Nat Genet 2001;27:271-6.

3. Sciurano RB, Rahn M, Pigozzi MI, Olmedo SB, Solari AJ. An azoospermic
man with a double-strand DNA break-processing deficiency in the sper-
matocyte nuclei: case report. Hum Reprod 2006;21:1194-203.

4. Inagaki A, Schoenmakers S, Baarends WM. DNA double strand break repair,
chromosome synapsis and transcriptional silencing in meiosis. Epigenetics
2010;5:255-66.

5. Turner JM. Meiotic sex chromosome inactivation. Development 2007;134:
1823-31.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, et al. Involve-
ment of mouse MIh1 in DNA mismatch repair and meiotic crossing over. Nat
Genet 1996;13:336-42.

Barlow AL, Hulten MA. Crossing over analysis at pachytene in man. Eur J
Hum Genet 1998;6:350-8.

Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T. Immunohistochemical
analysis of histone H3 modifications in germ cells during mouse spermato-
genesis. Acta Histochem Cytochem 2011;44:183-90.

Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG,
Burgoyne PS, et al. Surveillance of different recombination defects in mouse
spermatocytes yields distinct responses despite elimination at an identical
developmental stage. Mol Cell Biol 2005;25:7203-15.

Eaker S, Cobb J, Pyle A, Handel MA. Meiotic prophase abnormalities and
metaphase cell death in MLH1-deficient mouse spermatocytes: insights
into regulation of spermatogenic progress. Dev Biol 2002;249:85-95.
Faisal I, Kauppi L. Sex chromosome recombination failure, apoptosis, and
fertility in male mice. Chromosoma 2016;125:227-35.

MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters
of meiotic prophase. Trends Cell Biol 2011;21:393-400.

Roeder GS, Bailis JM. The pachytene checkpoint. Trends Genet 2000;16:
395-403.

Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A,
et al. Evidence that meiotic sex chromosome inactivation is essential for
male fertility. Curr Biol 2010;20:2117-23.

Marcet-Ortega M, Pacheco S, Martinez-Marchal A, Castillo H, Flores E,
Jasin M, et al. p53 and TAp63 participate in the recombination-
dependent pachytene arrest in mouse spermatocytes. PLoS Genet 2017;
13:21006845.

Pacheco S, Marcet-Ortega M, Lange J, Jasin M, Keeney S, Roig I. The ATM
signaling cascade promotes recombination-dependent pachytene arrest in
mouse spermatocytes. PLoS Genet 2015;11:e1005017.

Marston AL, Wassmann K. Multiple duties for spindle assembly checkpoint
kinases in meiosis. Frontiers Cell Dev Biol 2017;5:109.

Musacchio A. The molecular biology of spindle assembly checkpoint
signaling dynamics. Curr Biol 2015;25:R1002-18.

Sun SC, Kim NH. Spindle assembly checkpoint and its regulators in meiosis.
Hum Reprod Update 2012;18:60-72.

Foresta C, Ferlin A, Bettella A, Rossato M, Varotto A. Diagnostic and clinical
features in azoospermia. Clin Endocrinol 1995;43:537-43.

Guichaoua MR, Perrin J, Metzler-Guillemain C, Saias-Magnan J, Giorgi R,
Grillo JM. Meiotic anomalies in infertile men with severe spermatogenic de-
fects. Hum Reprod 2005;20:1897-902.

Hann MC, Lau PE, Tempest HG. Meiotic recombination and male infertility:
from basic science to clinical reality? Asian J Androl 2011;13:212-8.
Martin-du Pan RC, Campana A. Physiopathology of spermatogenic arrest.
Fertil Steril 1993;60:937-46.

North MO, Lellei |, Erdei E, Barbet JP, Tritto J. Meiotic studies of infertile men
in case of non-obstructive azoospermia with normal karyotype and no mi-
crodeleted Y-chromosome precise the clinical couple management. Ann
Genet 2004;47:113-23.

SunF, Turek P, Greene C, Ko E, Rademaker A, Martin RH. Abnormal progres-
sion through meiosis in men with nonobstructive azoospermia. Fertil Steril
2007;87:565-71.

Tesarik J, Greco E, Cohen-Bacrie P, Mendoza C. Germ cell apoptosis in men
with complete and incomplete spermiogenesis failure. Mol Hum Reprod
1998;4:757-62.

Topping D, Brown P, Judis L, Schwartz S, Seftel A, Thomas A, et al. Synaptic
defects at meiosis | and non-obstructive azoospermia. Hum Reprod 2006;
21:3171-7.

Weedin JW, Bennett RC, Fenig DM, Lamb DJ, Lipshultz LI. Early versus late
maturation arrest: reproductive outcomes of testicular failure. J Urol 2011;
186:621-6.

Codina-Pascual M, Oliver-Bonet M, Navarro J, Campillo M, Garcia F,
Egozcue S, et al. Synapsis and meiotic recombination analyses: MLH1 focus
in the XY pair as an indicator. Hum Reprod 2005;20:2133-9.

Sciurano RB, Rahn M, Rey-Valzacchi G, Coco R, Solari AJ. The role of asyn-
apsis in human spermatocyte failure. Int J Androl 2012;35:541-9.

1068

VOL. 112 NO. 6/ DECEMBER 2019


http://refhub.elsevier.com/S0015-0282(19)31992-2/sref1
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref1
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref2
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref2
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref2
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref3
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref3
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref3
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref4
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref4
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref4
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref5
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref5
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref6
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref6
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref6
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref7
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref7
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref8
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref8
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref8
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref9
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref9
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref9
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref9
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref10
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref10
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref10
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref11
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref11
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref12
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref12
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref13
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref13
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref14
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref14
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref14
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref15
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref15
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref15
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref15
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref16
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref16
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref16
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref17
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref17
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref18
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref18
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref19
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref19
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref20
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref20
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref21
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref21
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref21
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref22
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref22
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref23
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref23
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref24
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref24
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref24
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref24
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref25
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref25
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref25
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref26
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref26
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref26
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref27
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref27
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref27
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref28
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref28
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref28
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref29
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref29
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref29
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref30
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref30

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Vidal F, Templado C, Navarro J, Brusadin S, Marina S, Egozcue J. Meiotic and
synaptonemal complex studies in 45 subfertile males. Hum Genet 1982;60:
301-4.

Jan SZ, Jongejan A, Korver CM, van Daalen SKM, van Pelt AMM, Repping S,
et al. Distinct prophase arrest mechanisms in human male meiosis. Develop-
ment 2018;145:dev160614.

Ben Khelifa M, Ghieh F, Boudjenah R, Hue C, Fauvert D, Dard R, et al. A MEI
homozygous missense mutation associated with meiotic arrest in a consan-
guineous family. Hum Reprod 2018;33:1034-7.

Gershoni M, Hauser R, Barda S, Lehavi O, Arama E, Pietrokovski S, et al. A
new MEIOB mutation is a recurrent cause for azoospermia and testicular
meiotic arrest. Hum Reprod 2019;34:666-71.

Tuttelmann F, Ruckert C, Ropke A. Disorders of spermatogenesis: perspec-
tives for novel genetic diagnostics after 20 years of unchanged routine. Med
Genet 2018;30:12-20.

Riera-Escamilla A, Enguita-Marruedo A, Moreno-Mendoza D, Chianese C,
Sleddens-Linkels E, Contini E, et al. Sequencing of a “mouse azoospermia”
gene panel in azoospermic men: identification of RNF212 and STAG3 muta-
tions as novel genetic causes of meiotic arrest. Hum Reprod 2019;34:978-88.
Johnsen SG. Testicular biopsy score count—a method for registration of
spermatogenesis in human testes: normal values and results in 335 hypogo-
nadal males. Hormones 1970;1:2-25.

Dohle GR, Halley DJ, Van Hemel JO, van den Ouwel AM, Pieters MH,
Weber RF, et al. Genetic risk factors in infertile men with severe oligozoo-
spermia and azoospermia. Hum Reprod 2002;17:13-6.

Lammers JH, Offenberg HH, van Aalderen M, Vink AC, Dietrich AJ,
Heyting C. The gene encoding a major component of the lateral elements
of synaptonemal complexes of the rat is related to X-linked lymphocyte-
regulated genes. Mol Cell Biol 1994;14:1137-46.

Moore HD, Smith CA, Hartman TD, Bye AP. Visualization and characteriza-
tion of the acrosome reaction of human spermatozoa by immunolocaliza-
tion with monoclonal antibody. Gamete Res 1987;17:245-9.

Schindelin J, Arganda-Carreras |, Frise E, Kaynig V, Longair M, Pietzsch T,
et al. Fijii an open-source platform for biological-image analysis. Nat
Methods 2012;9:676-82.

Solier S, Pommier Y. The nuclear gamma-H2AX apoptotic ring: implications
for cancers and autoimmune diseases. Cell Mol Life Sci 2014;71:2289-97.
Gorbsky GJ. The spindle checkpoint and chromosome segregation in
meiosis. FEBS J 2015;282:2471-87.

de Rooij DG, de Boer P. Specific arrests of spermatogenesis in genetically
modified and mutant mice. Cytogenet Genome Res 2003;103:267-76.
Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. Chromosome synapsis de-
fects and sexually dimorphic meiotic progression in mice lacking spo11. Mol
Cell 2000;6:989-98.

Romanienko PJ, Camerini-Otero RD. The mouse spo11 gene is required for
meiotic chromosome synapsis. Mol Cell 2000;6:975-87.

Kumar R, Bourbon HM, de Massy B. Functional conservation of Mei4 for
meiotic DNA double-strand break formation from yeasts to mice. Genes
Dev 2010;24:1266-80.

Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, et al.
Meiotic prophase arrest with failure of chromosome synapsis in mice deficient
for Dmc1, a germline-specific RecA homolog. Mol Cell 1998;1:697-705.
Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr, et al. MutS homo-
log 4 localization to meiotic chromosomes is required for chromosome pair-
ing during meiosis in male and female mice. Genes Dev 2000;14:1085-97.
de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, et al.
Mouse MutS-like protein Msh5 is required for proper chromosome synapsis
in male and female meiosis. Genes Dev 1999;13:523-31.

Yang F, De La Fuente R, Leu NA, Baumann C, MclLaughlin KJ, Wang PJ.
Mouse SYCP2 is required for synaptonemal complex assembly and chromo-
somal synapsis during male meiosis. J Cell Biol 2006;173:497-507.

de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M,
Yuan L, et al. Mouse Sycp1 functions in synaptonemal complex assem-

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Fertility and Sterility®

bly, meiotic recombination, and XY body formation. Genes Dev 2005;
19:1376-89.

Kouznetsova A, Novak |, Jessberger R, Hoog C. SYCP2 and SYCP3 are
required for cohesin core integrity at diplotene but not for centromere cohe-
sion at the first meiotic division. J Cell Sci 2005;118:2271-8.

Hamer G, Novak I, Kouznetsova A, Hoog C. Disruption of pairing and synap-
sis of chromosomes causes stage-specific apoptosis of male meiotic cells.
Theriogenology 2008;69:333-9.

Edelmann W, Cohen P, Kane M, Lau K, Morrow B, Bennett S, et al. Meiotic
pachytene arrest in MLH1-deficient mice. Cell 1996;85:1125-34.
Reynolds A, Qiao H, Yang Y, Chen JK, Jackson N, Biswas K, et al. RNF212 is a
dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat
Genet 2013;45:269-78.

Guiraldelli MF, Felberg A, Almeida LP, Parikh A, de Castro RO, Pezza RJ.
SHOCT is a ERCC4-(HhH)2-like protein, integral to the formation of cross-
over recombination intermediates during mammalian meiosis. PLoS Genet
2018;14:e1007381.

Yang F, Gell K, van der Heijden GW, Eckardt S, Leu NA, Page DC, et al.
Meiotic failure in male mice lacking an X-linked factor. Genes Dev 2008;
22:682-91.

YangF, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, et al. TEX11 is
mutated in infertile men with azoospermia and regulates genome-wide
recombination rates in mouse. EMBO Mol Med 2015;7:1198-210.
Yatsenko AN, Georgiadis AP, Ropke A, Berman AJ, Jaffe T, Olszewska M,
et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile
men. N Engl J Med 2015;372:2097-107.

Krausz C, Casamonti E. Spermatogenic failure and the Y chromosome. Hum
Genet 2017;136:637-55.

Dix DJ, Allen JW, Collins BW, Poorman-Allen P, Mori C, Blizard DR, et al.
HSP70-2 is required for desynapsis of synaptonemal complexes during
meiotic prophase in juvenile and adult mouse spermatocytes. Development
1997;124:4595-603.

Sun F, Palmer K, Handel MA. Mutation of Eif4g3, encoding a eukaryotic
translation initiation factor, causes male infertility and meiotic arrest of
mouse spermatocytes. Development 2010;137:1699-707.

Nickerson HD, Joshi A, Wolgemuth DJ. Cyclin A1-deficient mice lack histone
H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late
prophase of male meiosis. Dev Biol 2007;306:725-35.

Jiang L, Li T, Zhang X, Zhang B, Yu C, Li Y, et al. RPL10L is required for male
meiotic division by compensating for RPL10 during meiotic sex chromosome
inactivation in mice. Curr Biol 2017;27:1498-505.€6.

Nantel F, Monaco L, Foulkes NS, Masquillier D, LeMeur M, Henriksen, et al.
Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice.
Nature 1996;380:159-65.

Vernet N, Mahadevaiah SK, Yamauchi Y, Decarpentrie F,
Mitchell MJ, Ward MA, et al. Mouse Y-linked Zfy1 and Zfy2 are ex-
pressed during the male-specific interphase between meiosis | and

meiosis Il and promote the 2nd meiotic division. PLoS Genet
2014;10:e1004444.
Decarpentrie  F, Vernet N, Mahadevaiah SK, Longepied G,

Streichemberger E, Aknin-Seifer I, et al. Human and mouse ZFY genes pro-
duce a conserved testis-specific transcript encoding a zinc finger protein
with a short acidic domain and modified transactivation potential. Hum
Mol Gen 2012;21:2631-45.

Yan W. Male infertility caused by spermiogenic defects: lessons from gene
knockouts. Mol Cell Endocrinol 2009;306:24-32.

Devroey P, Liu J, Nagy Z, Goossens A, Tournaye H, Camus M, et al. Preg-
nancies after testicular sperm extraction and intracytoplasmic sperm injec-
tion in non-obstructive azoospermia. Hum Reprod 1995;10:1457-60.
Tanaka A, Suzuki K, Nagayoshi M, Tanaka A, Takemoto Y, Watanabe S,
et al. Ninety babies born after round spermatid injection into oocytes: survey
of their development from fertilization to 2 years of age. Fertil Steril 2018;
110:443-51.

VOL. 112 NO. 6 / DECEMBER 2019

1069


http://refhub.elsevier.com/S0015-0282(19)31992-2/sref31
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref31
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref31
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref32
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref32
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref32
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref33
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref33
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref33
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref34
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref34
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref34
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref35
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref35
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref35
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref36
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref36
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref36
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref36
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref36
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref36
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref37
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref37
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref37
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref38
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref38
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref38
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref39
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref39
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref39
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref39
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref40
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref40
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref40
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref41
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref41
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref41
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref42
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref42
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref43
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref43
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref44
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref44
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref45
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref45
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref45
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref46
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref46
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref47
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref47
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref47
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref48
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref48
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref48
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref49
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref49
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref49
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref50
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref50
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref50
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref51
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref51
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref51
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref52
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref52
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref52
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref52
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref53
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref53
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref53
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref54
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref54
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref54
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref55
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref55
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref56
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref56
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref56
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref57
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref57
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref57
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref57
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref58
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref58
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref58
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref59
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref59
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref59
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref60
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref60
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref60
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref61
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref61
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref62
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref62
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref62
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref62
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref63
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref63
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref63
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref64
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref64
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref64
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref65
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref65
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref65
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref66
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref66
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref66
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref67
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref67
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref67
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref67
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref67
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref68
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref68
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref68
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref68
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref68
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref69
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref69
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref70
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref70
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref70
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref71
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref71
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref71
http://refhub.elsevier.com/S0015-0282(19)31992-2/sref71

ORIGINAL ARTICLE: ANDROLOGY

El bloqueo meidtico sucede mas frecuentemente durante la metafase y a menudo es incompleta en hombres azoospérmicos

Objetivo: Establecer qué puntos de control meidticos son activados en varones con alteracion grave en la espermatogénesis para me-
jorar la caracterizacion fenotipica de anomalias meidticas.

Diseno: Estudio retrospectivo observacional.
Lugar: Laboratorio de investigacion de centro médico universitario y clinica de andrologia.

Pacientes: Cuarentay ocho pacientes con alteraciones graves en la espermatogénesis confirmadas (puntuacién Johnsen 3-6) y 15 con-
troles (puntuacion Jonhsen 10).

Intervenciones: Ninguna.

Resultados principales: Evaluacion cuantitativa del analisis de inmunofluorescencia de marcadores especificos para determinar el in-
icio de la meiosis, el apareamiento de cromosomas, la progresion de la reparacion de la rotura de doble cadena del ADN, la formacion del
entrecruzamiento, la formacion de metafases meidticas, el bloqueo de la metafase y la formacion de espermatides, dando como resul-
tado una nueva clasificacién de tipos de bloqueos meidticos humanos.

Resultado(s): El bloqueo completo metafasico fue el fendmeno mas frecuente (27%), los pacientes con el porcentaje de metafases
apoptotico mas elevado también mostraron una reduccion en el numero de quiasmas. Se observé un bloqueo incompleto de la metafase
en un 17% de los pacientes. Solo cuatro pacientes (8%) fueron incapaces de finalizar el apareamiento meiético de cromosomas provo-
cando un bloqueo en paquitene. Se definieron dos nuevos tipos de bloqueo meiético: bloqueo en pre-metafase y post-metafase (15% y
13%, respectivamente).

Conclusion(es): El bloqueo mei6tico en hombres sucede con mayor frecuencia durante la metafase meiética. Este bloqueo puede ser
incompleto, dando como resultado un bajo nimero de esperméatides y a menudo ocurre asociado a una menor frecuencia de entrecru-
zamientos. El enfoque fenotipico aqui descrito proporciona una visién mecanicista para ayudar a identificar genes responsables de la
infertilidad y para evaluar las correlaciones genotipo - fenotipo en casos particulares.
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SUPPLEMENTAL FIGURE 1

A

Type 1 Type 2 Type 3 Type 4 Type 5

leptotene/

early zygotene late pachytene

late zygotene early pachytene

Identification of spermatocyte and spermatid substages. (A) Types of spermatids identified in control sample. (B) Meiotic prophase stages present in
controls (late zygotene and late pachytene nuclei are magnifications of the nuclei indicated in Fig. 1A). Immunostained antigens are as indicated on

the images. Scale bar, 10 um.
Enguita-Marruedo. Meiotic metaphase arrest in men. Fertil Steril 2019.
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SUPPLEMENTAL FIGURE 2
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Example overview images of representatives from each patient group. Representative widefield immunofluorescent images of each patient grouped
as indicated. Patient numbers are shown. Blue (DAPI) green (yH2AX or acrosome as indicated) and red (H3510p) immunofluorescent signals are
shown separately. Examples of early spermatocytes (ES), pachytene spermatocytes (XY), mitotic (M*) and (apoptotic) meiotic metaphases ((A)
M), and spermatids (Spt) are indicated with arrows. Scale bar, 20 um.

Enguita-Marruedo. Meiotic metaphase arrest in men. Fertil Steril 2019.
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SUPPLEMENTAL FIGURE 3

group IV

normal
XY body

aberrant
XY body

2 XY body-like
structures

patient P14 P13 P24
(n=110) | (n=198) | (n=927)
. normal XY body 18.2% 26.8% 27.5%
>2 XY body-like
structures abnormal XY body 20.0% 35.4% 57.5%
2 XY-body-like 44.5% 37.9% 15.0%
>2XY body-like 17.3% 0% 0%

Aberrant XY body-like structures in some group IV patients. Pachytene nuclei from three patients with aberrant XY body-like structures; P14, P13
(46XY, inv(1)(p21932.1)), and P24, all displaying varying frequencies of aberrant XY body-like structures, as indicated in Table 1 (lower right
corner). The variable “n" indicates the number of nuclei that were analyzed. All three patients also displayed a reduction in the average MLH1

foci number (Fig. 3). Scale bars, 10 um.

Enguita-Marruedo. Meiotic metaphase arrest in men. Fertil Steril 2019.
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