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Abstract
Introduction Tumor-targeted imaging is a promising technique for the detection of lymph node metastases (LNM) and 
primary tumors. It remains unclear which biomarker is the most suitable target to distinguish malignant from healthy tissue 
in esophageal adenocarcinoma (EAC).
Objective We performed an immunohistochemistry study to identify viable tumor markers for tumor-targeted imaging of 
EAC.
Methods We used samples from 72 patients with EAC to determine the immunohistochemical expression of ten potential 
tumor biomarkers for EAC (carbonic anhydrase IX [CA-IX], carcinoembryonic antigen [CEA], hepatic growth factor recep-
tor, epidermal growth factor receptor, epithelial membrane antigen [EMA], epithelial cell adhesion molecule [EpCAM], 
human epidermal growth factor receptor 2 [HER-2], urokinase plasminogen activator receptor, vascular endothelial growth 
factor-A [VEGF-A], and VEGF receptor 2). Immunohistochemistry was performed on tissue microarrays of LNM (n = 48), 
primary EACs (n = 62), fibrotic tissues (n = 11), nonmalignant lymph nodes (n = 24), and normal esophageal and gastric 
tissues (n = 40). Tumor marker staining was scored on intensity and percentage of positive cells.
Results EMA and EpCAM showed strong expression in LNM (> 95%) and primary EACs (> 95%). Significant expression 
was also observed for LNM and EAC using VEGF-A (85 and 92%), CEA (68 and 54%), and CA-IX (4 and 34%). The other 
tumor biomarkers showed expression of 0–15% for LNM and primary EAC. Except for VEGF-A, nonmalignant lymph node 
staining was scored as slight or absent.
Conclusions High expression rates and correlation between LNM in EAC combined with low expression rates in healthy 
lymph nodes and esophagus tissues were observed for EpCAM and CEA, meaning these are promising targets for tumor-
targeted imaging approaches for lymph nodes in patients with EAC.

Key Points 

The use of intraoperative targeted imaging to detect 
lymph node metastases is promising and will be an 
important step forward in personalizing the surgical 
treatment of patients with esophageal cancer.

The most suitable biomarker for targeted imaging tech-
niques in lymph node metastases of esophageal adeno-
carcinoma remains unclear.

Histological evaluation shows that epithelial cell adhe-
sion molecule and carcinoembryonic antigen are suitable 
targets for image-guided esophageal surgery, both before 
and after neoadjuvant chemoradiotherapy.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s4029 1-020-00448 -9) contains 
supplementary material, which is available to authorized users.
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1 Introduction

The incidence of esophageal cancer has increased rapidly 
and is currently the eighth most common cancer worldwide 
[1]. This is mainly due to an increasing incidence of esoph-
ageal adenocarcinoma (EAC), which is among the fastest 
increasing incidences of all malignant tumors [2]. Surgical 
resection of EAC in combination with lymphadenectomy 
after neoadjuvant chemoradiotherapy (nCRT) is the gold 
standard of intentionally curative treatment in the Nether-
lands [3]. Surgical treatment is associated with severe mor-
bidity, partly because of lymphadenectomy, and substantially 
affects quality of life [4]. Although lymph node metastases 
(LNM) are detected in up to 70% of patients at the time 
of diagnosis, this decreases to 31% after nCRT, suggesting 
that 69% of patients receive unnecessary lymphadenectomy 
[3]. Diagnostic techniques currently used in the management 
of esophageal cancer are insufficiently accurate to reliably 
predict LNM before surgery [5, 6]. An accurate imaging 
technique for diagnosing LNM and stratification of patients 
according to need for lymphadenectomy is urgently needed 
to personalize the surgical treatment of patients with esopha-
geal cancer.

Tumor-targeted imaging is a promising technique for the 
detection of solid tumors and assessment of locoregional 
LNM. Several targeted imaging applications are used to 
stage cancer and LNM and to monitor response to nCRT 
[7, 8]. Nuclear imaging techniques, such as single-photon 
emission computed tomography (SPECT)-CT or positron 
emission tomography (PET)-CT, can be used for preopera-
tive staging of cancer and response monitoring [7, 9, 10]. 
Another rapidly emerging imaging field is intraoperative 
fluorescence imaging. Several clinical trials have investi-
gated clinically available antibodies conjugated to a fluoro-
phore for targeted fluorescence imaging of breast, kidney, 
colorectal, and head and neck cancers [8, 11–13]. The use 
of targeted intraoperative imaging to diagnose LNM and 
primary tumors on a submillimeter level holds great prom-
ise and can be used to support complete tumor resection in 
esophageal cancer [8].

The optimal target biomarker to visualize tumor cells 
using targeted imaging approaches remains unclear for 
esophageal cancer. Immunohistochemistry (IHC) of tumor 
tissue is a validated method of identifying the expression of 
potential biomarkers. The aim of this study was to use IHC 
to identify potentially viable tumor markers that would be 
suitable for imaging approaches for the detection of primary 
EAC, particularly LNM.

2  Methods

2.1  Tissue Selection

IHC was performed on normal and tumor tissue from 72 
patients with EAC who underwent surgical resection in 
the Radboud University Medical Center between 2005 
and 2018. Tissue samples of LNM in EAC (n = 48), pri-
mary EAC (n = 62), fibrotic tissue (n = 11), nonmalignant 
“healthy” lymph nodes (n = 24), and normal esophageal and 
gastric tissues (n = 40) were collected. Nonmalignant lymph 
nodes with or without features of total regression after nCRT 
(fibrotic tissue) served as validation for background signals 
in targeted imaging. This study was performed according to 
the requirements of the Medical Ethics Committee of the 
Radboud University Medical Center, registration number 
2017-3759.

2.2  Tumor Markers

To identify the optimal tumor marker for intraoperative 
fluorescence imaging, we selected ten markers according to 
the availability of clinically used tracers for tumor-targeted 
imaging techniques and expression results gathered from 
the literature. Hepatic growth factor receptor (c-MET), car-
bonic anhydrase IX (CA-IX), epidermal growth factor recep-
tor (EGFR), epithelial cell adhesion molecule (EpCAM), 
human epidermal growth factor receptor 2 (HER-2), car-
cinoembryonic antigen (CEA), epithelial membrane anti-
gen (EMA; also known as MUC1), urokinase plasminogen 
activator receptor (uPAR), vascular endothelial growth fac-
tor A (VEGF-A) and one of its receptors (VEGFR2) were 
included.

2.3  Immunohistochemistry

Tissue microarrays (TMA) with cores of 2 mm were con-
structed from formalin-fixed paraffin-embedded archival 
specimens. The area of interest was marked on the original 
hematoxylin and eosin stained section. Cores from histo-
logical representative regions were selected and arranged 
in a new tissue array paraffin block. Per individual patient, 
at least two cores from every tissue were included in the 
TMA. Sections (4  µm) were deparaffinized and rehy-
drated, and heat-induced epitope retrieval was conducted 
in 10 mM sodium citrate buffer (pH 6.0) or EDTA solu-
tion (pH 9.0) for 10 minutes in a microwave. No antigens 
were retrieved for CA-IX and VEGF-A. After blocking of 
endogenous peroxidase with 3%  H2O2, slides were incu-
bated with primary antibodies. Visualization was carried 
out with a 1:2 dilution of Brightvision Poly-HRP anti-
Ms/Rb immunoglobulin G in 0.05% phosphate-buffered 
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saline-Tween, followed by a 7-min incubation at room 
temperature with BrightDAB (both from Immunologic, 
Duiven, the Netherlands). Slides were counterstained with 
hematoxylin. uPAR sections were treated similarly except 
that epitope retrieval was performed using PT link and a 
low-pH Envision FLEX target retrieval solution (Agilent, 
Santa Clara, CA, USA) and visualization was carried out 
with Envision anti-mouse (K4001, Agilent) and 3,3 diam-
inobenzidine tetrahydrochloride (Agilent). For HER-2, a 
ready-to-use HercepTest kit was used (Dako A/S, Den-
mark) according to the manufacturer’s protocol. Appro-
priate positive controls were included for each antibody. 
Table 1 in the Electronic Supplementary Material (ESM) 
provides specific details of the primary antibodies used.

2.4  Scoring System

IHC scoring was performed by the researcher (DG) and 
gastrointestinal pathologist (RP). Validation of IHC scor-
ing was independently performed by a second gastrointes-
tinal pathologist (IN) in a sample of 30 randomly selected 
TMA cores for each staining. Tumor marker expression 
was scored on intensity (none = 0, slight = 1, moderate = 2, 
strong = 3) and percentage of positive tumor cells (estima-
tion). All markers were scored on membranous expression, 
except for VEGF-A and VEGFR2, which were scored on 
cytoplasmic expression. Examination results for duplicate 
cores were consolidated into one score, where the highest 
staining was scored when the intensity varied between cores 
within a patient. The threshold for a positive detection rate 
was defined as an intensity of ≥ 2 for > 10% of the cells. If all 
primary tumor or LNM cores were missing from a patient, 
the set was defined as missing and excluded from analysis.

To discriminate between tumor and background tissue by 
tumor-targeted imaging, the tumor-to-normal (T/N) ratio was 
calculated between the primary tumor and normal esopha-
geal tissue and for metastatic and normal lymph nodes. The 
T/N ratio was defined as the average total immunostaining 
score (TIS) of tumor tissue divided by the average TIS score 
for healthy tissue. The TIS score was calculated per region 
of interest by multiplying the mean intensity by the mean 
percentage of positive cells using five categories (0 = none; 
1 = < 25%; 2 = 25–49%; 3 = 50–74%; 4 = > 75%).

2.5  Statistical Analysis

Statistical analyses were performed using R (version 
3.2.1). The interobserver variation between pathologists 
was calculated with kappa statistics, and the Spearman 
rank correlation test was performed to test for associations 
with clinical parameters. In all tests, a p value < 0.05 was 
considered significant.

3  Results

3.1  Patient Characteristics

Table 1 summarizes the characteristics of the patients 
with EAC included in this study. In total, 72 patients were 
included, of whom 49 had received pretreatment with 
nCRT; 54 patients with LNM (75%) were included. Of 

Table 1  Patient characteristics

Data are presented as median (range) or n (%) unless otherwise indi-
cated
CROSS scheme used in the CROSS study [3] (this scheme includes 
intravenous carboplatin and intravenous paclitaxel with concurrent 
radiotherapy followed by surgery), Mandard grade response to neo-
adjuvant therapy according to Mandard classification, n number of 
patients, N-category N stadium according to 8th TNM staging [30], 
nCRT  neoadjuvant chemoradiotherapy, T-category T stadium accord-
ing to 8th TNM staging [30], TNM tumor, node, metastases, TRG1 
complete response, TRG2 presence of rare residual cancer, TRG3 
increase in the number of residual cancer cells, but predominantly 
fibrosis, TRG4 residual cancer outgrowing fibrosis, TRG5 absence of 
regressive changes [31]

Characteristics All (n = 72)

Age at surgery, years 64 (44–82)
Subtype
 Intestinal 63 (87.5)
 Diffuse 7 (9.7)
 Other 2 (2.8)

Tumor size (cm) 3 (0.2–9.0)
T-category
 (y)pT0 6 (8.3)
 (y)pT1 12 (16.7)
 (y)pT2 25 (34.7)
 (y)pT3 25 (34.7)
 (y)pT4 1 (1.4)
 Unknown 3 (4.2)

N-category
 (y)pN0 16 (22.2)
 (y)pN1 54 (75.0)
 Unknown 2 (2.8)

Number of dissected lymph nodes 14 (2–28)
Lymph node metastases 3 (1–20)
Neoadjuvant therapy
 None 23 (31.9)
 nCRT (CROSS) 49 (68.1)

Mandard grade
 TRG 1 3 (6.1)
 TRG 2 14 (28.6)
 TRG 3 19 (38.8)
 TRG 4 8 (16.3)
 TRG 5 5 (10.2)
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these, 45 patients had sufficient data to compare expres-
sion from LNM with that from the corresponding primary 
tumor for all tumor markers.

3.2  Expression of Esophageal Adenocarcinoma 
Markers

Figure 1 provides an overview of the expression of each 
individual tumor marker. EMA and EpCAM were 100% 
expressed in LNM and 98% in primary EAC, with a 
median intensity of 3 (range 2–3). VEGF-A, CEA and 
CA-IX expression was observed in 41 of 48 (85%), 33 of 
48 (68%), and 2 of 48 (4%) LNM and in 57 of 62 (92%), 
35 of 62 (54%), and 21 of 62 (34%) primary EACs, respec-
tively. The expression of other tumor biomarkers was low 
and ranged between 0 and 15% for both LNM and primary 
EAC (Figs. 1, 2). The correlation of the expression pat-
terns between EAC and LNM is shown in Table 2 in the 
ESM and summarized in Table 2. An agreement of 100% 
between expression in LNM and the corresponding pri-
mary EAC was found for EMA and EpCAM.

3.3  Expression of Tumor Markers in (Sub)Total 
Response

To find suitable targets to monitor treatment response after 
nCRT, expression in minimal residual tumor and fibrotic 
tissue is important. Only VEGF-A expression was observed 
in the fibrotic tissue of patients with complete response to 

nCRT (Mandard classification 1). In patients with a subto-
tal response (Mandard 2), expression rates of 100% were 
observed in LNM and residual tumor tissue for EpCAM 
and EMA. The expression rates of CA-IX, CEA, c-MET, 
HER-2, and VEGF-A were 0%, 78%, 11%, 11%, and 67% in 
LNM and 36%, 45%, 0%, 10%, and 100% in residual EAC of 
patients with subtotal responses, respectively. EGFR, uPAR, 
and VEGFR2 showed no expression in subtotal responses to 
nCRT (Fig. 1 in the ESM).

3.4  Expression of Tumor Markers in Nonmalignant 
Tissue

Staining in nonmalignant “healthy” and fibrotic lymph nodes 
was slight or absent for most markers, except for VEGF-A, 
where extracellular expression was strong (Fig. 3, supple-
mental Fig. 2). For EMA, uPAR, and VEGFR2, background 
staining was slight in normal lymph nodes. Staining for both 
VEGF-A and EMA was strong in nonmalignant squamous 
esophageal and gastric mucosal tissue. Background expres-
sion was slight for CEA and EpCAM in nonmalignant 
esophageal tissue, and without expression in normal lymph 
nodes. For CA-IX, expression was moderate to strong in 
normal muscle cells.

3.5  Target Selection

Table 2 shows the most important findings for target selec-
tion. To select suitable tumor markers, a high T/N ratio is 

Fig. 1  Tumor marker expression in lymph node metastases and pri-
mary esophageal adenocarcinoma. CA-IX carbonic anhydrase IX, 
CEA carcinoembryonic antigen, c-MET hepatic growth factor recep-
tor, EAC esophageal adenocarcinoma, EGFR epidermal growth factor 
receptor, EMA epithelial membrane antigen, EpCAM epithelial cell 

adhesion molecule, HER-2 human epidermal growth factor receptor 
2, LNM lymph node metastases, uPAR urokinase plasminogen activa-
tor receptor, VEGF-A vascular endothelial growth factor-A, VEGFR2 
VEGF receptor 2
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LNM EAC LNM EAC

CA-IX

EpCAM

CEA HER-2

c-MET uPAR

EGFR VEGF-A

EMA VEGFR2

Fig. 2  Example of immunohistochemical staining of a metastatic 
lymph node and corresponding primary esophageal adenocarcinoma 
for each tumor marker. Scalebar equals 50 μm. CA-IX carbonic anhy-
drase IX, CEA carcinoembryonic antigen, c-MET hepatic growth 
factor receptor, EAC esophageal adenocarcinoma, EGFR epidermal 

growth factor receptor, EMA epithelial membrane antigen, EpCAM 
epithelial cell adhesion molecule, HER-2 human epidermal growth 
factor receptor-2, LNM lymph node metastases, uPAR urokinase plas-
minogen activator receptor, VEGF-1 vascular endothelial growth fac-
tor-1, VEGFR2 VEGF receptor-2

Table 2  Characteristics of tumor markers for targeted imaging

CA-IX carbonic anhydrase IX, CEA carcinoembryonic antigen, c-MET hepatic growth factor receptor, EAC esophageal adenocarcinoma, EGFR 
epidermal growth factor receptor , EMA epithelial membrane antigen, EpCAM epithelial cell adhesion molecule, HER-2 human epidermal 
growth factor receptor 2, LNM lymph node metastases, T/N ratio EAC tumor to background esophageal adenocarcinoma and nonmalignant 
esophageal tissue, T/N ratio LNM tumor to background ratio lymph node metastases and nonmalignant lymph nodes, uPAR urokinase plasmino-
gen activator receptor, VEGF-A vascular endothelial growth factor-A, VEGFR2 VEGF receptor 2

Target % with positive 
LNM expression

% with positive 
EAC expression

T/N ratio LNM T/N ratio EAC Agreement EAC and 
LNM expression

Previously targeted imaging

CA-IX 4 34 > 10 > 10 65 Clinical study [13]
CEA 68 54 > 10 3.62 72 Clinical study [27]
c-MET 4 10 > 10 > 10 87 Clinical study [32]
EGFR 4 3 > 10 > 10 96 Clinical study [33]
EMA 100 98 > 10 1.00 100 Clinical study [34]
EpCAM 100 98 > 10 > 10 100 Preclinical [29]
HER-2 13 11 > 10 > 10 84 Clinical study [35]
uPAR 8 15 1.09 > 10 89 Clinical study [36]
VEGF-A 85 92 1.21 0.91 80 Clinical study [12]
VEGFR2 2 7 0.42 0.33 93 Preclinical [37]
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important to distinguish tumor tissue from nonmalignant tis-
sue. With respect to LNM, a low T/N was found for uPAR, 
VEGF-A, and VEGFR2, which suggests it is hard to distin-
guish LNM from nonmalignant lymph nodes. For the other 
markers, a high T/N ratio of > 10 was found, which is suita-
ble for targeted imaging approaches (Fig. 2 in the ESM). The 
T/N ratio for primary EAC and healthy esophageal tissue 
was one or less for VEGF-A, VEGFR2, and EMA because 
the TIS values were equal in tumor tissue and healthy tissue. 
A moderate T/N ratio of 3.63 was found for CEA, and the 

ratio was > 10 for the other markers. Furthermore, the candi-
date tumor markers (CEA, EMA, EpCAM) were investigated 
in a larger set of normal and tumor esophageal tissues using 
GEPIA [14], a web-based tool for gene expression profil-
ing based on The Cancer Genome Atlas (TCGA) data. Only 
EpCAM showed significantly higher expression in tumor 
than in normal tissue (LOG2-fold change 4.6, p < 0.01) 
(Fig. 3 in the ESM). Table 3 in the ESM summarizes the 
function, expression pattern, and expression levels in EAC 
based on the literature.

Normal LN Regressive/fibro�c LN Malignant LN

EpCAM 

HER-2

uPAR

VEGF-A

VEGFR2

Normal LN Regressive/fibro�c LN Malignant LN

HE

CA-IX

CEA

c-MET

EGFR

EMA

Fig. 3  Example of immunohistochemical staining of one normal 
(left), one regressive (middle) and one malignant (right) lymph node. 
Each of the three lymph nodes (normal, regressive, malignant) is 
selected from the same patient to show an example of the staining 
pattern of the various tumor markers. Scalebar equals 50  μm.  CA-
IX carbonic anhydrase IX, CEA carcinoembryonic antigen, c-MET 

hepatic growth factor receptor, EAC esophageal adenocarcinoma, 
EGFR epidermal growth factor receptor, EMA epithelial membrane 
antigen, EpCAM epithelial cell adhesion molecule, HE hematoxy-
lin and eosin, HER-2 human epidermal growth factor receptor-2, LN 
lymph node, uPAR urokinase plasminogen activator receptor, VEGF-
1 vascular endothelial growth factor-1, VEGFR2 VEGF receptor-2
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3.6  Subgroup Analysis

Figure 1 and Table 4, both in the ESM, show the results of 
the subgroup analysis performed for neoadjuvant treatment. 
No clinically relevant difference was found in expression 
between patients receiving and not receiving nCRT.

3.7  Validation of Immunohistochemistry Scoring

The agreement between the IHC scoring of both pathologists 
was 94%, with a corresponding kappa value for interobserver 
agreement of 0.88 (p < 0.001).

4  Discussion

We studied the expression of ten tumor markers to provide 
the first step toward clinical implementation of tumor-tar-
geted imaging for LNM and EAC. High expression rates in 
LNM and corresponding primary EAC were observed using 
immunohistochemical antibodies for EpCAM, EMA, VEGF-
A, and CEA. Expression in nonmalignant lymph nodes was 
only slight for all except VEGF-A. However, a low T/N ratio 
was found for EAM in healthy esophageal and gastric tis-
sue, which indicates that it may be hard to distinguish tumor 
from background tissue using targeted imaging approaches. 
Therefore, EpCAM seems the most promising target for tar-
geted imaging of LNM in EAC since a strong expression 
of CEA is less frequent than that of EpCAM. Nonetheless, 
an imaging marker might show different kinetics in tumor 
cells than in nonmalignant tissue [15]. Furthermore, since 
expression did not differ between patients receiving and not 
receiving nCRT, and most markers showed a high overall 
correlation of up to 100% between immunohistochemical 
expression in LNM and primary EAC, it is possible to pre-
dict marker expression in LNM using IHC of the biopsy 
before treatment. Therefore, the most suitable marker can 
be selected for each individual patient before surgery, which 
also means CA-IX and uPAR are promising targets in a 
select subset of patients.

IHC results for numerous tumor markers in EAC have 
been described previously, mostly in terms of therapy 
options rather than imaging. Driessen et al. [16] studied the 
IHC expression of CA-IX and VEGF-A in 39 patients with 
EAC and found that CA-IX expression (49 vs. 34%) was 
similar to that in our results but that VEGF-A expression 
was lower (69 vs. 92%). However, another study reported 
a higher VEGF expression rate in tumor and background 
tissue, as corroborated by our results [17]. Chan et al. [18] 
studied the IHC expression of EGFR, HER-2, and c-MET in 
patients with EAC and reported a higher expression of these 
markers than that in our results; however, this study included 
only patients with early disease and primary surgery. HER-2 

has been often studied in esophageal cancer for treatment 
with trastuzumab [18]. A systematic review of nine studies 
reported a pooled expression of 25% (146 of 573 patients) 
for HER-2 in EAC, but this meta-analysis revealed large dif-
ferences in results between studies [19]. The pooled expres-
sion of uPAR was reported as 57% (range 14–90) for 12 
gastroesophageal cancer studies [20], which is considerably 
higher than the 15% in our results. This may be explained 
by the random selection of tumor tissue. Generally, uPAR 
expression is higher at the invasive front of the tumor and 
lower at the core [21]. Reported IHC expression rates of 
CEA, EMA, and EpCAM are comparable to those in our 
results [22–25].

The current study provides a detailed overview of the 
expression of ten biomarkers in LNM, the corresponding 
primary EAC, fibrotic tissue after treatment, and surround-
ing normal tissue. The main strength of the study is that 
we investigated not only biomarker expression on LNM and 
EAC but also the effect of neoadjuvant treatment on that 
expression. Some potential limitations should also be dis-
cussed. First, biomarker selection was based on the literature 
and the availability of imaging agents for promising clini-
cal translation, so other potential EAC biomarkers were not 
included. Second, the antibodies used in this study differ 
from those that will be used for targeted imaging. Therefore, 
the extent to which the IHC results are comparable with 
results of in vivo imaging remains unclear. Third, the same 
threshold for marker positivity is used in all tumor mark-
ers to translate the results to promising markers for targeted 
imaging. Finally, IHC scoring is not an objective measure-
ment, so results should be considered semi-quantitatively 
[26]. However, the interobserver variability between the 
pathologists was low.

Image-guided surgery using fluorescently labeled tracers 
to target specific tumor markers and detect LNM intraopera-
tively is a promising application for targeted imaging. Dur-
ing surgery, extensive lymphadenectomy could be omitted 
or minimized in patients with limited or no LNM, thereby 
reducing the associated morbidity [4]. To our knowledge, 
tumor-targeted imaging has never been studied in patients 
with EAC to detect LNM during surgery, but a suitable 
tumor marker might enable this. EpCAM and CEA seem 
of particular interest for clinical translation given our cur-
rent findings. Recently, a CEA-targeted fluorescent probe 
for intraoperative imaging, SGM-101, was validated in 26 
patients with colorectal cancer [27] and 12 patients with 
pancreatic cancer [28]. Results indicated that the probe was 
safe and feasible for visualizing both primary adenocarci-
nomas and small metastases. A fluorescent tracer target-
ing EpCAM has not yet been used in human clinical trials. 
However, Boogerd et al. [29] reported on a fluorescent anti-
EpCAM tracer that was tested preclinically. Further work 
should focus on the clinical validation of EpCAM and CEA 
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targets for intraoperative tumor-targeted imaging in EAC to 
personalize esophageal surgery.

5  Conclusion

High expression rates in LNM and corresponding primary 
EAC were observed using immunohistochemical antibodies 
for CEA, EpCAM, EMA, and VEGF-A. For EpCAM and 
CEA, expression was only slight in nonmalignant esopha-
geal tissue, meaning these are promising viable EAC tumor 
markers for tumor-targeted imaging. Further studies should 
be conducted to determine the clinical value of these mark-
ers for tumor-targeted imaging approaches.
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