4 research outputs found

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Biological invasions in South African National Parks

    No full text
    Objectives: A core objective in South African National Parks (SANParks) is biodiversity conservation and the maintenance of functional ecosystems, which is compromised by alien species invasions. The 2016 Alien and Invasive Species regulations of the National Environmental Management: Biodiversity Act (NEM:BA) requires landowners to develop management plans for alien and invasive species, as well as report on the status and efficacy of control. Method: To compile the species list, we started with the 2011 SANParks alien species list. Name changes were updated and SANParks ecologists and park managers contacted to verify the species lists and add new records. Species reported by external experts were added in the same manner. The management programme costs and species controlled per park per year were extracted from SANParks’ Working for Water programme database. Results: SANParks has listed 869 alien and extra-limital species, including 752 plants and 117 animals, increasing from 781 alien species in 2011. About R 590 million has been spent by the Working for Water/Biodiversity Social Programmes since 2000/2001. Of the species recorded, 263 are listed by NEM:BA, including 12 Category 1a species, 184 Category 1b species, 28 Category 2 species and 39 Category 3 species. Conclusion: While large clearing programmes have been maintained since at least 1998, improving prioritisation is necessary. We provide a short synopsis of (1) what alien species are present in SANParks, (2) the species and parks that management has focused on, (3) the implications of the NEM:BA Invasive Alien Species Regulations and (4) future developments in monitoring

    Historical fire regimes in a poorly understood, fire-prone ecosystem: eastern coastal fynbos

    Get PDF
    Wecharacterised the historical fire regime (1900–2010) in eastern coastal fynbos shrublands, which occur in a poorly studied part of the Cape Floral Kingdom (CFK). Natural (lightning-ignited) fires dominated the fire regime. Fire seasonality decreased from west (Outeniqua region) to east (Tsitsikamma region) within the study area, and between the study area and further west in the CFK. This is consistent with a west–east climatic gradient in the CFK, where rainfall is concentrated in winter in the west, and evenly distributed across months in the east. Median fire return intervals (FRIs) (1980–2010) were broadly comparable to other fynbos areas but estimates varied widely depending on whether or not the data were censored (16–26 years with and 8–13 years without censoring). FRIs appeared to be shorter in the Tsitsikamma, where rainfall and plant growth rates are higher, than in the Outeniqua. The total area burnt annually has increased significantly since 1980, coinciding with an increase in weather conducive to fires, suggesting that fire regimes may be responding to climate change. Frequent recurrence of very large fires and the virtual absence of vegetation in older postfire age classes are potential causes for concern in achieving fynbos conservation objectives
    corecore