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Abstract. Wecharacterised the historical fire regime (1900–2010) in eastern coastal fynbos shrublands, which occur in a

poorly studied part of the Cape Floral Kingdom (CFK). Natural (lightning-ignited) fires dominated the fire regime. Fire
seasonality decreased from west (Outeniqua region) to east (Tsitsikamma region) within the study area, and between the
study area and further west in the CFK. This is consistent with a west–east climatic gradient in the CFK, where rainfall is

concentrated in winter in the west, and evenly distributed across months in the east. Median fire return intervals (FRIs)
(1980–2010) were broadly comparable to other fynbos areas but estimates varied widely depending on whether or not the
data were censored (16–26 years with and 8–13 years without censoring). FRIs appeared to be shorter in the Tsitsikamma,

where rainfall and plant growth rates are higher, than in the Outeniqua. The total area burnt annually has increased
significantly since 1980, coinciding with an increase in weather conducive to fires, suggesting that fire regimes may be
responding to climate change. Frequent recurrence of very large fires and the virtual absence of vegetation in older post-

fire age classes are potential causes for concern in achieving fynbos conservation objectives.

Additional keywords: Cape Floral Kingdom, fire cause, fire frequency, fire return interval, fire season, fire size, Garden
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Introduction

Fire is an important process in many ecosystems worldwide
(Naveh 1975; Bond and van Wilgen 1996; Bond et al. 2005), in
which it shapes the structure and composition of the vegetation

(Keeley 1986; van Wilgen et al. 1992; Morrison et al. 1995).
The occurrence of fires over an extended period in a given area is
referred to as a fire regime (Gill 1975), described in terms of the

frequency, season, intensity and size of fires (Morgan et al.

2001; Gill and Allan 2008). Managers of fire-prone ecosystems
need to understand the historical fire regimes of the areas that

they manage, so that they can better understand how the current
vegetation was shaped (Morgan et al. 2001; Schuler and
McClain 2003), and whether or not they need to intervene in

cases where contemporary fire regimes may be in conflict with
biodiversity conservation requirements (Seydack 1992).

Fire is a dominant disturbance in the fynbos shrublands of
the Cape Floral Kingdom (CFK) of South Africa. The CFK is

an internationally renowned hotspot of biodiversity (Myers
et al. 2000), where sound fire management is fundamental to
the attainment of conservation objectives (Kruger and
Bigalke 1984). Fynbos (literally meaning fine-leaved bush)

is an evergreen, sclerophyllous shrubland on sandy, infertile
soils associated with the winter and aseasonal rainfall regions
of south-western South Africa (Cowling et al. 1997). This

vegetation type is fire prone and fire adapted, with the
frequency, season and intensity of fires being important
determinants of vegetation structure and composition

(Kruger and Bigalke 1984; van Wilgen et al. 1992; Vlok
and Yeaton 1999).

Within the CFK, a climatic gradient exists in which the

seasonality in rainfall, solar radiation, temperature and
evaporation decreases from west to east (Deacon et al.

1992). The Mediterranean climate (cool, wet winters and
warm, dry summers) of the west contrasts with the all-year
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rainfall and relatively temperate conditions of the east
(Schulze 1965; van Wilgen 1984; Southey 2009), with pre-
sumed effects on the fire regimes of the respective areas.

Despite the climatological differences, existing guidelines for
the management of fire in fynbos are largely based on research
carried out in the west (Kruger and Bigalke 1984; van Wilgen

and Richardson 1985; van Wilgen and Viviers 1985; van
Wilgen et al. 1994), and little is known about the fire ecology
of the eastern coastal region (van Wilgen 2009). Fires in

western and inland parts of the CFK normally occur at
intervals of 8–40 years (van Wilgen et al. 1992) although fuel
loads are seldom limiting beyond the initial 2–4 years post-fire
(Brown et al. 1991; Fernandes and Botelho 2003; Moritz et al.

2004; van Wilgen et al. 2010). Recruitment of fynbos in these
areas is best after fires in summer and autumn (van Wilgen and
Viviers 1985; Midgley 1989). In the east, however, recruitment

success is less dependent on fire season than post-fire rainfall
amounts (Heelemann et al. 2008); here, in addition to rainfall,
conditions conducive to fires show little seasonality (Kraaij

et al. 2012a). Similarly, plant growth rates may be higher in
response to an increasing amount of warm-season rainfall
towards the east, with effects on fuel accumulation rates and

thus fire frequency.
Comprehensive fire histories in the CFK (Seydack et al.

2007; Forsyth and van Wilgen 2008; van Wilgen et al. 2010)
and other temperate shrublands (Keeley et al. 1999; Montenegro

et al. 2004; Syphard et al. 2009; Moreira et al. 2011) provide
mounting evidence for long-term changes in fire regimes
(notably increases in fire frequency), possibly related to

climate change ((Piñol et al. 1998; Mouillot et al. 2002;
Keeley and Zedler 2009; Wilson et al. 2010). In the eastern
coastal CFK, weather conditions conducive to the occurrence

and spread of fires have increased since 1940 (Kraaij et al.
2012a) but it is not known whether the fire regime has changed
accordingly. The historic approach towards fire management
in the east differed from that in the western parts of the CFK.

In the west, the focus was on burning for conservation,
whereas in the east, extensive fuel-reduction burning was
attempted in fynbos to protect plantations of exotic pines

(Kraaij et al. 2011).
The recent establishment of the Garden Route National

Park (GRNP; Government Gazette 2009) in the eastern coastal

CFK shifted the focus of management from the protection of
pine plantations to the conservation of natural fynbos vegeta-
tion, and called for the formulation of new fire policies and

practices, which in turn requires better understanding of
historical fire regimes. In this paper, we explore the historical
fire regimes in this area in terms of the seasonality, cause, size
and frequency of fires. More specifically, we assess whether

the west–east climatic gradient within the CFK is reflected in a
west–east trend of decreasing fire seasonality and increasing
fire frequency. For these purposes, we distinguish between a

western and eastern region within the study area as well as
comparing the historical fire regimes of the study area with
well documented fire histories of other areas further west in the

CFK. Finally, we ask whether the frequency of fires in the
study area has increased during its recorded history, and we
examine the relationship between fire occurrence and fire
climate.

Methods

Study area

The study area (33.808S, 22.598E–34.018S, 24.268E) occurs
within the eastern coastal CFK and comprises the coastal
slopes of the Outeniqua Mountains (east of the Touw River)

and the coastal slopes of the Tsitsikamma Mountains –
hereafter referred to as the Outeniqua and Tsitsikamma regions
(the western and eastern portions of the study area) (Fig. 1).

Owing to maritime influence, the climate of the study area is
temperate (Schulze 1965). Rainfall occurs throughout the year,
with winter months being the driest. Mean annual rainfall

increases eastwards, from 820 in the Outeniqua to 1078mm in
the Tsitsikamma Mountains (Bond 1981; Southwood 1984).
The proportion of summer rain also increases eastwards

(Schulze 1965; Tyson and Preston-Whyte 2000). Weather
conditions suitable for fires dominate in the dry summer
months in the west of the CFK, but become progressively less
seasonal towards the east (Kraaij et al. 2012a). Hot and des-

iccating, katabatic winds that flow from the interior (known
locally as bergwinds) (Seydack et al. 2007) occur most fre-
quently during autumn and winter in the study area, when they

increase the likelihood of fires (Southey 2009; Sharples et al.
2010). Lightning occurs throughout the year at an average of
30 days per year and at a mean density of ,1 flashes km�2

year�1 (Kraaij et al. 2012a).
The fire-prone vegetation within the study area includes

,110 000 ha of fynbos shrublands (Mucina and Rutherford
2006) and 47 000 ha of commercial pine plantations. Fire-

resistant indigenous forests occur largely on the coastal plateau
to the south of this area, aswell as in themountains in fire refugia
(Geldenhuys 1994). Our assessment of the historical fire regime

focussed on the fynbos of the study area occurring on state land,
most of which was incorporated into the GRNP in 2009. Kraaij
et al. (2011) provide a comprehensive account of the study area

in terms of its management history and challenges pertaining to
fire management.

Fire history database

We compiled a database of all fires recorded in the study area
since the beginning of the 20th century by land managers of the

national Department of Forestry and subsequent authorities
responsible for the management of state land (Kraaij et al.
2011). A limitation, particularly pre-1980, was the inadequacy

and selectivity of wildfire and prescribed burn reporting: wild
fires were generally only reported when they would have
threatened timber or other assets, whereas successful prescribed
burns were often not reported in a similar traceable format (van

Wilgen 1981; Marshall 1983). We distinguished between
records with and without sufficient spatial information on fire
boundaries to allow capturing in GIS, hereafter referred to as

spatial and non-spatial records. Two discrete databases were
compiled, i.e. a GIS database of spatial records, and a qualitative
database of spatial and non-spatial records combined (Fig. 2).

The qualitative database (1900–2010) was used to explore
fire season, size and cause, whereas the spatial database was
used to explore FRIs (1980–2010) and vegetation post-fire age
distribution.
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Fire cause, season and size

We determined the relationship between the number of fires and

the area burnt on record (1900–2010) per decade, using Spear-
man rank correlation analysis. There were far fewer fire records
in earlier years, and these accounted for a much smaller area

burnt when compared with later years, suggesting that earlier
records (particularly pre-1980) were incomplete (cf. Seydack
et al. 2007; Kraaij et al. 2011). We compared the importance of

different causes of fires, classified as natural (ignited by light-
ning), prescribed (burning for fuel reduction or catchment
management purposes, including for grazing), accidental
(including deliberate but unauthorised ignitions, escapes from

cooking or warming fires, power lines and escaped prescribed
fires) and unknown. Given the inadequacy and selectivity of fire
reporting in terms of cause (see above), we interpreted results

with circumspection.
We furthermore assessed the seasonality and size distribu-

tion of fires, assuming that the fires on record were a random

sample of all fires in terms of these factors, as nothing suggested

that fires have been reported differentially among seasons or fire
size classes. We classified fires into size classes as very small
(,10 ha), small (10–100 ha), medium (100–1000 ha), large

(1000–10 000 ha) or very large ($10 000 ha). Seasonality of
fire was explored in terms of the austral seasons, defined as
summer (December to February), autumn (March to May),
winter (June to August) and spring (September to November).

For the analyses of fire season and cause, we assessed the
Outeniqua and Tsitsikamma regions separately for comparison.
We used Spearman rank correlation analysis to examine the

relationship between time (decades) and proportion of area
burned, first by fires of different causes and second, fires of
different size classes. To explore potential long-term changes,

we assessed trends in the annual area burnt (since 1980, as
earlier records were considered incomplete), as well as its
relationship with the annual mean of daily fire weather condi-
tions, using least-squares regression. Fire weather conditions

Stormsrivier

Knysna
Sedgefield

Wilderness

0 10 205 km

0 10 205 km

(a)

(b) Indigenous forest

Plantation

Ocean or estuaries

GRNP boundary

Road–N2

Indian Ocean

Indian Ocean

South Africa

a   bCFK

Fire return interval (years)

1–5

6–10

11–15

16–20

�20

Fig. 1. The insert shows the location of the (a) Outeniqua and (b) Tsitsikamma regions of the study area in relation to the Cape Floral

Kingdom (CFK) and South Africa. Shading denotes mean fire return interval per unique fire history polygon during 1980–2010.

Boundaries of the Garden Route National Park (GRNP) are shown; and indigenous forest and plantations in areas for which there are

no fire return intervals on record.
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were calculated (Kraaij et al. 2012a) in terms of the McArthur
fire-danger index (FDI) (Noble et al. 1980). To moderate
extreme interannual variability in burnt area, we used 3-year

moving means of annual area burnt and annual mean FDI and
log transformed these variables to conform to the assumption of
normality. Finally, we compared the seasonal distribution of

area burnt between the Outeniqua and Tsitsikamma regions,
using contingency tables with chi-square test statistic. Statistical
analyses were done in StatGraphics Centurion XV.

Fire return intervals

We confined our analysis of FRIs to the fynbos of the GRNP
(extent indicated in Table 1) and to the period 1980–2010, as
earlier spatial records were considered incomplete (cf. Forsyth

and van Wilgen 2008; van Wilgen et al. 2010; Wilson et al.

2010). To assess FRIs, we delimited areas (polygons) of unique
fire history by intersecting all spatial fire records (Forsyth and
vanWilgen 2008; vanWilgen et al. 2010) in GIS (using ArcGIS

9.2). We only considered polygons $1.0 ha, as omission of
the smallest fires is a negligible source of uncertainty in fire
frequency analysis (Moritz et al. 2009).

Each polygon of unique fire history was characterised by
zero or more fires, and polygons with two or more fires had one
or more complete FRIs recorded. The fire interval before the

first fire on record and subsequent to the last fire on record
resulted in FRIs of unknown duration, unless the first or last fire
was in 1980 or 2010 respectively. Such open-ended FRIs can be
accommodated in analyses through censoring (Polakow and

Dunne 1999; Moritz et al. 2009) and are referred to as ‘censored’,
whereas complete FRIs are referred to as ‘uncensored’. We
estimated FRIs in three ways in order to allow comparison with

other studies using various methods: (1) by treating each
polygon as a single observation point (regardless of size) and
restricting the analysis to uncensored intervals; (2) by treating

each polygon as a single observation point and accounting for
censored and uncensored intervals and (3) by repeating the first
two analyses but weighting the contribution of individual poly-

gons by area.We usedmaximum likelihood survival analysis by
fitting a two-parameterWeibull function to the FRI distributions
(Johnson andGutsell 1994;Moritz 2003), weighted according to
burnt area (polygon size) (Fernandes et al. 2012). The Weibull

hazard of burning l(t)¼ ctc�1/bc gives the instantaneous proba-
bility of a fire occurring in a specific time interval: the scale
parameter b is the typical FRI that will not be exceeded 63.2% of

the time; the shape parameter c describes the change in burn
probability since the last fire (at time t) and is useful to measure
how fire recurrence is affected by fuel age; hazard is constant in

time (i.e. age-independent) when c¼ 1, increases linearly with
time when c. 1, and increases exponentially when c. 2
(Fernandes et al. 2012). We also calculated the median Weibull
fire-free interval, which is a central tendency measure of

asymmetrical fire interval distributions (Grissino-Mayer
1999). Models were fitted to the whole study area, as well
as the Outeniqua and Tsitsikamma regions separately using

SAS 9.3.
The fire record (1980–2010) was furthermore examined in

each unique polygon for the frequency of occurrence of short

(,7 year) FRIs. Such intervals approximate the vegetation age
below which fires result in poor or no recruitment of slow-
maturing obligate reseeding plants (Kraaij et al. 2012b). The

proportional distribution of current (2011) post-fire vegetation

Table 1. Extent of the study area and Outeniqua and Tsitsikamma regions and the percentages of these areas over

which spatial records of fires and fire return intervals (FRIs) were recorded during 1980]2010; and the degree to which

the data on FRIs were complete

Study area Outeniqua Tsitsikamma

Total extent (ha) 110 020 22 590 87 429

Percentage of area burnt at least once 92.6 85.2 94.6

Percentage of area with at least one complete FRI 53.1 64.0 50.3

Percentage of FRIs censoredA 62.5 59.3 69.6

AProportion of complete FRIs expressed as a percentage of complete plus open-ended FRIs.
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Fig. 2. Distribution across decades of fire records assimilated for the study

period, expressed in terms of (a) the number of fires and (b) the area burnt.

The qualitative database comprised of spatial records (which also constitut-

ed the GIS spatial database) and non-spatial records (for which fire size but

not fire boundaries were known).
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age classes was also calculated for the study area and Outeniqua
and Tsitsikamma regions.

Results

Fire history database

A total of 1538 fires (719 in Outeniqua and 809 in Tsitsikamma)
burnt 399 683 ha during 1900–2010. The area burnt and the
number of fires increased in later years, suggesting that record

keeping improved over time, particularly from 1980 onwards
(Fig. 2). The area burnt per decade was significantly correlated
with the number of fires on record per decade (correlation

coefficient rS0 ¼ 0.88, P, 0.01, n¼ 11). However, there were
outliers, e.g. during the 1990s and 2000s when fewer fires burnt
disproportionately large areas compared with the 1980s.

Fire cause, season and size

Natural fires accounted for almost 60% of the total area burnt in

the study area, whereas fires of accidental, unknown and pre-
scribed cause (in decreasing order of importance) were much
less important in terms of areas burnt (Table 2). However, fires

of natural or prescribed cause were less numerous than those of
accidental or unknown cause. In terms of area burnt, natural fires
dominated the fire regime in the Tsitsikamma, whereas pre-
scribed fires were unimportant (Table 2). The area burnt was

more evenly distributed among fire causes in the Outeniqua,
with accidental fires contributing most to area burnt.

The proportion of the area burnt by natural fires per decade
increased from 1900 to 2010 (rS0 ¼ 0.97, P, 0.01, n¼ 11),
whereas the proportion of the area burnt by accidental fires

per decade decreased over the same period (rS0 ¼�0.73,
P, 0.05, n¼ 11); there was no change in the area burnt by fires
of unknown origin (prescribed fires were not assessed, see

Methods) (Fig. 3). The proportional increase in area burnt by
natural fires was particularly apparent in the Tsitsikamma since
the 1990s.

Overall, the distribution of fires (of all causes) was more
seasonal in the Outeniqua (Coefficient of Variation, CV, in
proportional area burnt among austral seasons¼ 50%) than in
the Tsitsikamma (CV¼ 39%) (Fig. 4). The proportional distri-

bution of natural fires among seasons differed significantly
between the regions in terms of area burnt (x2¼ 52.1, d.f.¼ 3,
P, 0.001). Natural fires burnt the largest areas during summer

and spring in the Outeniqua, whereas the distribution of natural
fires wasmore even among seasons in the Tsitsikamma, with the
smallest areas burnt in summer (Fig. 4).

Fire sizes ranged from,1 to 41 902 ha. Most (74%) reported
fires were very small, and collectively these accounted for less
than 1%of the total area burnt (Fig. 5). Large and very large fires

were infrequent but accounted for 86% of the total area burnt.
All the recorded very large fires in the Outeniqua occurred in
spring, whereas very large fires in the Tsitsikamma occurred in
all seasons with a peak in autumn (Fig. 6). The proportional area

burnt by very large fires increased with time (rS0 ¼ 0.77,
P, 0.05, n¼ 11). Of the eight largest fires on record, seven

Table 2. Proportional distribution of fires (1900]2010) of different causes, expressed in terms of the area burnt and the number of fires

Results are shown for the study area and Outeniqua and Tsitsikamma regions

Cause Study area Outeniqua Tsitsikamma

Area burnt Number of fires Area burnt Number of fires Area burnt Number of fires

(%) (%) (%) (%) (%) (%)

n¼ 1439 n¼ 1538 n¼ 673 n¼ 719 n¼ 766 n¼ 819

Natural 59.3 16.4 25.7 19.1 82.8 14.2

Prescribed 5.5 4.7 12.7 7.4 0.4 3.9

Accidental 20.0 53.1 34.7 45.9 9.8 59.5

Unknown 15.2 24.9 26.9 27.7 7.0 22.5
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occurred since 1990, and five were of natural cause. The total
area burnt annually increased significantly since 1980
(F1,29¼ 4.6, P, 0.05, R2¼ 0.14), and was significantly posi-

tively related to mean annual FDI (F1,29¼ 12.5, P, 0.01,
R2¼ 0.30).

Fire return intervals

Fires were (spatially) recorded over most of the study area
during 1980–2010, but complete FRIs (areas with at least two

overlapping fires) were recorded across only approximately half
of the study area (Table 1). The percentage of FRIs that required
censoring (the number of open-ended FRIs expressed as a per-

centage of complete plus open-ended FRIs, Table 1) was higher
in the Tsitsikamma than in the Outeniqua. Estimates of median
FRI varied widely (range 6.6–26.2 years) depending on the
method of estimation (Table 3). Estimates of median FRI were

greater if data were censored, whereas weighting by area had a
lesser and varying effect. Estimates of FRI (and the Weibull
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scale parameter b) based on uncensored data only were signif-

icantly lower for the Tsitsikamma (median 8.3 years) than for
the Outeniqua (13.2 years), whereas the trend was reversed for
estimates based on censoring (Table 3; Fig. 1). During the period

1980–2010, 10% of the study area burnt at least once at post-fire
ages of ,7 years.

TheWeibull shape parameter c ranged from 1.2–3.2 and was

consistently reduced by censoring and increased by area weight-
ing (Table 3). Censoring thus decreased the estimated depen-
dency of burn probability on fuel age, whereas area weighting
increased the estimated dependency on fuel age. Survival

functions (Fig. 7) based on uncensored and area-weighted data
only, predict that half of the study area is likely to burn at
,10 years of age, whereas ,3% of the area is likely to survive

beyond 20 years of age. The slope of the curve for the
Tsitsikamma is steeper than that of the Outeniqua suggesting
shorter FRIs in the former region.

The current (2011) distribution of post-fire vegetation age
classes is skewed towards the younger age classes, with 61% of
the study area at 1–6 years of age, 12% at 7–12 years of age and
27% at .12 years of age. Less than 2% of the study area (and

virtually none in the Tsitsikamma) is older than 20 years. The
fynbos is younger on average in the Tsitsikamma (mean post-
fire age 7.4 years) than in the Outeniqua (11.3 years).

Discussion

Fire cause

Trends in fire records from 1900–2010 indicated that natural
fires dominated the fire regime in the Tsitsikamma in terms of
area burnt, whereas fires of human origin accounted for almost

half of the area burnt in the Outeniqua (Table 2). Prescribed
burning had little influence on the overall fire regime in the
study area. It accounted for ,5% of the total area burnt since
1980 – a period for which records are regarded as reasonably

comprehensive (Fig. 2) – and for only 11% during 1970–1989,

when prescribed burning of fynbos is known to have been
practised more widely than at any other time (Seydack et al.

2007; van Wilgen 2009; Esler et al. 2010; Kraaij et al. 2011).

Although this result needs to be interpreted with caution (given
inadequacies in the reporting of fire cause), it is supported by
similar findings in other fynbos protected areas (Brown et al.

1991; Seydack et al. 2007; Forsyth and van Wilgen 2008; van
Wilgen et al. 2010). Prescribed burning has historically been
constrained by various factors, including economical, ecologi-
cal, physical and political (van Wilgen 2009; Kraaij et al. 2011;

vanWilgen et al. 2012), andwide-scale implementation is likely
to remain unfeasible.

The relative importance of fire causes changed from 1900 to

2010: natural fires increased in areal importance whereas
accidental fires of human origin decreased (Fig. 3), which is
consistent with historical trends of fires in the Swartberg further

inland (Seydack et al. 2007). The significance of natural fires in
the study area (59% of the area burnt; Table 2), particularly
since the 1990s (Fig. 3), is comparable to or exceed that recorded
in the remote Swartberg, Kammanassie and Cedarberg Moun-

tains (54, 50 and 43%; Forsyth and van Wilgen 2007) and far
exceeds that found in more accessible fynbos areas (1–17%,
mean 10%, n¼ 5; Forsyth and van Wilgen 2007).

Fire season

The distribution of natural fires was more seasonal (concen-
trated in and around summer) in the Outeniqua than in the

Tsitsikamma (Fig. 4). This is consistent with a west–east
climatic gradient across the CFK at large, from strictly winter to
all-year rainfall (Tyson and Preston-Whyte 2000) and an asso-

ciated trend in fire seasonality from summer–autumn-
dominated to all-year round (vanWilgen et al. 2010). However,
a detailed climatic assessment (Kraaij et al. 2012a) has not
revealed a west–east gradient in terms of the seasonality of

Table 3. Median fire return interval (FRI) andWeibull parameters b and c (with 95% confidence limits) for FRI distribution analysis (1980]2010)

incorporating and not incorporating censoring and area weighting (see text)

Results are shown for the whole study area and for the Outeniqua and Tsitsikamma regions separately

Modelling approach area Median FRI Scale parameter b Shape parameter c Number of intervals

Region (years) Mean (95% Cl) Mean (95% Cl) (uncensored, censored)

Excluding censored data; no area weighting:

Study area 9.9 12.2 (11.4–13.0) 1.8 (1.6–1.9) (308, 0)

Outeniqua 11.3 13.7 (12.7–14.7) 1.9 (1.7–2.1) (231, 0)

Tsitsikamma 6.6 8.0 (7.1–8.9) 2.0 (1.7–2.4) (77, 0)

Excluding censored data; area weighting:

Study area 9.6 11.3 (11.2–11.3) 2.3 (2.2–2.3) (308, 0)

Outeniqua 13.2 15.3 (15.2–15.4) 2.5 (2.5–2.5) (231, 0)

Tsitsikamma 8.3 9.3 (9.3–9.3) 3.2 (3.2–3.2) (77, 0)

Including censored data; no area weighting:

Study area 17.7 22.2 (20.6–23.9) 1.6 (1.5–1.8) (308, 513)

Outeniqua 16.9 20.6 (19.2–22.2) 1.8 (1.7–2.0) (231, 337)

Tsitsikamma 22.5 30.8 (24.2–39.3) 1.2 (1.0–1.4) (77, 176)

Including censored data; area weighting:

Study area 22.1 27.5 (27.3–27.6) 1.7 (1.7–1.7) (308, 513)

Outeniqua 16.4 19.0 (18.9–19.1) 2.5 (2.4–2.5) (231, 337)

Tsitsikamma 26.2 33.9 (33.6–34.2) 1.4 (1.4–1.4) (77, 176)
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either weather conditions conducive to burning or lightning

occurrence within the study area. In the Outeniqua, natural fires
burnt the largest areas between November and March (Fig. 4a),
similar to the findings of Marshall (1983) for the entire
Outeniqua mountain catchment. The inclusion of fires of human

origin produced peaks in the area burnt in winter and (to a lesser
extent) summer, as found by Marshall (1983) and Le Roux
(1969) for the Outeniqua for 1910–1965. In the Tsitsikamma,

natural fires occurred throughout the year with peaks in
spring and autumn, whereas summer fires were comparatively

unimportant in terms of area burnt (Fig. 4b). Fires of human
origin burnt a negligible area but numerous small fires occurred
throughout the year. W. M. Brink (unpubl. data) likewise

recorded little seasonality of fires on forestry estates in the
Tsitsikamma during 1987–1990.

Bergwind conditions increase fire potential (van Wilgen

1984) and are thought to result in higher incidence, severity
and size of fires (Le Roux 1969; Southey 2009). Mountain
catchment managers deem the bergwind season in the study area

to be from May to September (Le Roux 1969) and generally
discourage burning during this time (Kraaij et al. 2011).
Although high fire-danger conditions peak duringMay–August,
large fires may also occur under moderate fire-danger condi-

tions (Kraaij et al. 2012a). Extensive areas accordingly burnt in
the Tsitsikamma during mid-spring (October) and autumn
(March to April) (Fig. 4b) signifying that high fire-danger

periods are not restricted to the bergwind season and may occur
year round.

Fire size

The observed relationship between number of fires and area
burnt (Fig. 5), with few, very large fires dominating the fire
regime, is characteristic of many vegetation types globally

(Keeley et al. 1999; Forsyth and van Wilgen 2008; Gill and
Allan 2008; van Wilgen et al. 2010; Moreira et al. 2011).
However, the incidence of very large natural fires seems to have

increased in the study area since the 1990s (Fig. 3). It may be
argued that poor record keeping in earlier years (pre-1980) led to
the absence of large fires from the fire record. However, large

fires are unlikely to have gone unnoticed, as seen from the large
fires in the Outeniqua during the 1940s and 1960s, which were
widely documented in unpublished reports. An increase over
time in large fires has also been observed in the Swartberg, but

has been attributed to a change in fire management policy
(Seydack et al. 2007). An increase in the frequency of very large
fires may be a cause for concern, as theywould reduce FRIs over

extended areas. FRIs that are shorter than plant juvenile periods
may lead to local extinctions (Bond et al. 1984; Bell 2001),
whereas skewed vegetation age class distributions may com-

plicate fire risk management and invasive alien plant clearing
initiatives (Haidinger and Keeley 1993; Esler et al. 2010) by
spreading workloads unevenly in time.

Fire return intervals

Mediterranean shrubland communities (perhaps with the
exception of those in Chile) are generally resilient to FRIs of 20–
50 years (Keeley 1986; Le Maitre and Midgley 1992). In the
study area, estimates of median FRIs (since 1980) are variable

(8–26 years), but are broadly comparable to estimates of median
FRI in other fynbos protected areas (15–55 years based on
uncensored, weighted data, Seydack et al. 2007; 10–21 years

based on censored, unweighted data, van Wilgen et al. 2010).
Restricting the analyses to known FRIs produced lower esti-
mates of median FRI, as found by Moritz et al. (2009) and

Fernandes et al. (2012). The high level of censoring required in
our study (and particularly in the Tsitsikamma; Table 1)
approximates a level (75%) thought to produce unrealistic
models (Fernandes et al. 2012). The high level of censoring, and
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Fig. 7. Survival functions (the proportion of the area surviving without a

successive fire) for the (a) study area, (b) Outeniqua and (c) Tsitsikamma

based on uncensored and area-weighted fire return interval data (1980–

2010) as modelled by the two-parameter Weibull distribution (see Table 3).
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the magnitude of its effect on estimates of median FRI, suggest
that these medians are likely to be overestimates of FRI. On the
other hand, estimates of median FRI based solely on uncensored

data are likely to be underestimates, in that fire-free intervals are
disregarded. Typical FRIs are thus likely to be intermediate
between estimates based on censoring and no censoring. The

variability in our results (and limitations or differences in the
analysis or presentation of results in other studies) makes
comparison with FRIs of other fynbos protected areas prob-

lematic. Discrepancies between results from censored and
uncensored data emphasise the importance of comprehensive
and long-term records for accurate characterisation of historical
FRIs, and the need to ensure that similar methods of estimation

have been used when comparing FRIs across studies.
Median FRI, based on uncensored data, was shorter in the

Tsitsikamma than in the Outeniqua, but the trend reversed with

consideration of censored data (Table 3). For our within-study
comparison of FRIs, and from a management perspective, we
deem the estimates based on uncensored data to be a more

realistic reflection of regional differences in recent times (sup-
ported by Fernandes et al. 2012). Although not conclusive, our
results provide some evidence for a west–east gradient of

increasing fire frequency with increasing rainfall and increasing
plant growth rates (Le Maitre and Midgley 1992) within the
eastern CFK. Shorter FRIs may well be the norm in the
Tsitsikamma and may be acceptable from an ecological point

of view (cf. Kraaij et al. 2012b). Seydack et al. (2007) similarly
found an inverse relationship between FRI in fynbos shrublands
and rainfall (,plant productivity) along an altitudinal gradient

in the Swartberg Mountains. However, at CFK-scale, FRIs are
broadly comparable between the east and west, suggesting that
variation is related to local or regional moisture regimes (Kruger

and Bigalke 1984) rather than a west–east gradient within the
CFK at large (cf. Kraaij et al. 2012b).

Ten percent of the study area burnt at least once at post-fire
ages of ,7 years since 1980, with the Tsitsikamma having

experienced these short FRIs more extensively than the Out-
eniqua (Fig. 1). In these areas, post-fire recruitment of slow-
maturing reseeding shrubsmay have been compromised. Recent

ecological studies in the area found that post-fire recruitment
success of this functional type was near zero following a FRI of
5 years and always above replacement levels following FRIs of

7 years or more (Kraaij et al. 2012b). This suggests that
minimum fire return intervals to ensure survival of this func-
tional type would be similar to those from other parts of the CFK

(vanWilgen et al. 2011). Further research onmaturation rates of
slow-maturing reseeding plant species (Lamont et al. 1991) and
success of vegetation recovery after fires at different intervals
(Morrison et al. 1995) would be required to confirm these

preliminary findings. Further research on the frequency of
repeated short-interval burns in the landscape would also be
informative. Short FRIs also have implications for the manage-

ment of alien invasive plant species, particularly those that are
fire adapted (such as the Pinus species grown in adjacent
plantations; Kraaij et al. 2011) where fire drives their rapid

spread and proliferation in fynbos (Richardson 1998). The
recent occurrence of very large fires at short intervals and the
virtual non-existence of older vegetation age classes are unde-
sirable, as it may cause a shortage of seed of slow-maturing

obligate seeders (Kraaij et al. 2012b) and inadequate habitat
diversity for fauna (Martin andMortimer 1991) in the landscape,
in addition to leaving managers unable to deal with demands for

clearing of invasive alien plants.

Fuel age dependency

Our estimates of the Weibull shape parameter c, a measure of
fuel age dependency, varied with the modelling approach.
Restricting the analysis to known FRIs (uncensored data) sug-
gested an increased dependency of fire return probability on fuel

age, consistent with the findings of others (Moritz et al. 2009;
Fernandes et al. 2012). Our models with censoring and without
area weighting produced estimates of c similar to those obtained

for other fynbos areas (vanWilgen et al. 2010). We suspect that
vanWilgen et al. (2010) underestimated fuel age dependency by
only having modelled FRI distributions without weighting by

area. Nevertheless, the levels of fuel age dependency existent in
fynbos do not imply that young vegetation is fire proof, as seen
from our survival functions (Fig. 7). Fuel-reduction treatments
designed to maintain young vegetation post-fire age classes

therefore would not necessarily provide reliable barriers to fire
spread, although strategic placement of areas with reduced fuel
may benefit fire suppression activities by providing safer areas

for firefighting (Moritz 2003; Keeley and Zedler 2009).

Long-term changes in fire regimes

We recorded an increase in the incidence of large (mostly

lightning-ignited) fires since 1990. The total area burnt per year
has also increased significantly since 1980 coincident with a
significant increase over time in weather conditions conducive

to the spread of fires (Kraaij et al. 2012a). This suggests that the
increase in the extent of fires in recent decades is not an artefact
of incomplete data, but a real trend, possibly related to climate

change effects. Globally, and in the CFK, many areas have
similarly experienced recent increases in fire frequency (Keeley
et al. 1999; Montenegro et al. 2004; Forsyth and van Wilgen

2008; Syphard et al. 2009;Moreira et al. 2011), which have been
associated with increases in the frequency of weather conditions
favourable for fires (Piñol et al. 1998; Mouillot et al. 2002;
Keeley and Zedler 2009; Wilson et al. 2010), or increases in

human densities and related ignition sources (Keeley et al. 1999;
Radeloff et al. 2005). Although we demonstrated a correlation
between trends in fire occurrence and fire climate, the potential

influences of (direct) anthropogenic effects (e.g. human-caused
ignitions, fire suppression effort) also need to be discerned
(Moreira et al. 2011) through long-term monitoring, which can

also be used to discriminate between the effects ofmedium-term
climatic cycles and long-term change.
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