849 research outputs found

    Neodymium isotopic composition and concentration in the western North Atlantic Ocean: results from the GEOTRACES GA02 section

    Get PDF
    The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data for Nd isotopes and concentrations from twelve seawater depth profiles, which follow the flow path of North Atlantic Deep Water (NADW) from its formation region in the North Atlantic to the northern equatorial Atlantic. Samples were collected during two cruises constituting the northern part of the Dutch GEOTRACES transect GA02 in 2010. The results show that the different water masses in the subpolar North Atlantic Ocean, which ultimately constitute NADW, have the following Nd isotope characteristics: Upper Labrador Sea Water (ULSW), εNd = -14.2 ± 0.3; Labrador Sea Water (LSW), εNd = -13.7 ± 0.9; Northeast Atlantic Deep Water (NEADW), εNd = -12.5 ± 0.6; Northwest Atlantic Bottom Water (NWABW), εNd = -11.8 ± 1.4. In the subtropics, where these source water masses have mixed to form NADW, which is exported to the global ocean, upper-NADW is characterised by εNd values of -13.2 ± 1.0 (2sd) and lower-NADW exhibits values of εNd = -12.4 ± 0.4 (2sd). While both signatures overlap within error, the signature for lower-NADW is significantly more radiogenic than the traditionally used value for NADW (εNd = -13.5) due to the dominance of source waters from the Nordic Seas (NWABW and NEADW). Comparison between the concentration profiles and the corresponding Nd isotope profiles with other water mass properties such as salinity, silicate concentrations, neutral densities and chlorofluorocarbon (CFC) concentration provides novel insights into the geochemical cycle of Nd and reveals that different processes are necessary to account for the observed Nd characteristics in the subpolar and subtropical gyres and throughout the vertical water column. While our data set provides additional insights into the contribution of boundary exchange in areas of sediment resuspension, the results for open ocean seawater demonstrate, at an unprecedented level, the suitability of Nd isotopes to trace modern water masses in the strongly advecting western Atlantic Ocean

    Neodymium isotopic composition and concentration in the western North Atlantic Ocean: Results from the GEOTRACES GA02 section

    Get PDF
    The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data for Nd isotopes and concentrations from twelve seawater depth profiles, which follow the flow path of North Atlantic Deep Water (NADW) from its formation region in the North Atlantic to the northern equatorial Atlantic. Samples were collected during two cruises constituting the northern part of the Dutch GEOTRACES transect GA02 in 2010. The results show that the different water masses in the subpolar North Atlantic Ocean, which ultimately constitute NADW, have the following Nd isotope characteristics: Upper Labrador Sea Water (ULSW), eNd = -14.2 ± 0.3; Labrador Sea Water (LSW), eNd = -13.7 ± 0.9; Northeast Atlantic Deep Water (NEADW), eNd = -12.5 ± 0.6; Northwest Atlantic Bottom Water (NWABW), eNd = -11.8 ± 1.4. In the subtropics, where these source water masses have mixed to form NADW, which is exported to the global ocean, upper-NADW is characterised by eNd values of -13.2 ± 1.0 (2sd) and lower-NADW exhibits values of eNd = -12.4 ± 0.4 (2sd). While both signatures overlap within error, the signature for lower-NADW is significantly more radiogenic than the traditionally used value for NADW (eNd = -13.5) due to the dominance of source waters from the Nordic Seas (NWABW and NEADW). Comparison between the concentration profiles and the corresponding Nd isotope profiles with other water mass properties such as salinity, silicate concentrations, neutral densities and chlorofluorocarbon (CFC) concentration provides novel insights into the geochemical cycle of Nd and reveals that different processes are necessary to account for the observed Nd characteristics in the subpolar and subtropical gyres and throughout the vertical water column. While our data set provides additional insights into the contribution of boundary exchange in areas of sediment resuspension, the results for open ocean seawater demonstrate, at an unprecedented level, the suitability of Nd isotopes to trace modern water masses in the strongly advecting western Atlantic Ocean

    Development of a real-time algorithm for detection of the divertor detachment radiation front using multi-spectral imaging

    Get PDF
    In this paper we present a novel algorithm to extract the optical plasma boundary and radiation front for detached divertor plasmas. We show that reliable detection of the divertor leg and radiation front is possible using lightweight image processing tools. Using a non-tomographic approach, the detected divertor leg and radiation front can be mapped to the poloidal plane. This approach is fast and accurate enough for real-time control purposes, allowing in particular real-time plasma shape and detachment control, and post-shot detachment physics and dynamics analysis.</p

    Correcting for non-periodic behaviour in perturbative experiments: application to heat pulse propagation and modulated gas-puff experiments

    Get PDF
    This paper introduces a recent innovation in dealing with non-periodic behavior often referred to as transients. These transients can be the result from unforced response due to the initial condition and other drifts which are a source of error when performing and interpreting Fourier analysis on measurement data. Fourier analysis is particularly relevant in system identification used to build feedback controllers and the analysis of various pulsed experiments such as heat pulse propagation studies. The basic idea behind the methodology is that transients are continuous complex-valued smooth functions in the Fourier domain which can be estimated from the Fourier data. Then, these smooth functions can be approximately subtracted from the data such that only periodic components are retained. The merit of the approach is shown in two experimental examples, i.e., heat pulse propagation (core transport analysis) and radiation front movement due to gas puffing. The examples show that the quality of the data is significantly improved such that it allows new interpretation of the results even for non-ideal measurements.</p

    A task analysis approach to quantify bottlenecks in task completion time of telemanipulated maintenance

    Get PDF
    Telemanipulation techniques allow for human-in-the-loop assembly and maintenance tasks in otherwise inaccessible environments. Although it comes with limitations in achieved performance – required strict operator selection and extensive training are widely encountered – there is very little quantitative insight in the exact problems operators encounter during task execution. This paper provides a novel hierarchical task analysis approach to identify the most time-consuming subtask elements and to quantify the potential room for performance improvement during telemanipulated maintenance tasks. The approach is illustrated with a human factors case study in which 5 subjects performed six generic maintenance tasks, using a six degree of freedom master device connected to a simulated task environment. Overall it can be concluded that the proposed three phased task analysis is a useful tool to guide improvements since it is able to relate high-level problems (e.g. large variability) to behaviour on lower task-levels. For the case study, the largest potential for improvement was found for specific subtasks characterized by complex contact transitions and precise control of tool orientation, and in the reduction of variation of the task execution.</p
    • …
    corecore