555 research outputs found
Apollo to Artemis: Mining 50-Year Old Records to Inform Future Human Lunar Landing Systems
Under the Artemis lunar exploration program, NASA is committed to landing American astronauts on the moon by 2024. While NASAs new Space Launch System rocket and Orion capsule will carry astronauts from Earth to the Gateway, the human lunar landing system has not yet been fully defined. As in the Apollo program, there are concerns for vehicle weight and internal volume such that seats may not be desirable, and standing during lunar descent and ascent may be a preferred engineering solution. With such a design, astronauts will experience +GZ (head-to-foot) accelerations during capsule accelerations, and it is unclear whether spaceflight deconditioned astronauts can tolerate these. Apollo astronauts stood during lunar descent and ascent, and the data contained in the early program records for those missions represent a unique resource that may provide insights to the cardiovascular stress associated with this human landing system design
Comparison of Organ Dosimetry for Astronaut Phantoms: Earth-Based vs. Microgravity-Based Anthropometry and Body Positioning
The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models reduce the overall uncertainty in organ dosimetry for mission-risk projections and assessments for astronaut
A2: Smalls Falls Revisted: A Journey Through a Paleozoic Sedimentary Basin
Guidebook for field trips in Western Maine and Northern New Hampshire: New England Intercollegiate Geological Conference, p. 35-60
Nerve-preserving aortoiliac reconstruction surgery: Anatomical study and surgical approach
AbstractObjective: Dysfunctional ejaculation and, to a lesser extent, dysfunctional erection caused by disruption of efferent sympathetic pathways is a common complication after aortoiliac reconstruction surgery. The aim was to give an anatomic motivation for a nerve-preserving approach on the basis of right-sided unilateral disruption of lumbar splanchnic nerves. Methods: Anatomic and microscopic analysis of preaortic and para-aortic retroperitoneal regions in human cadavers was performed. Anatomic analysis was conducted of two aortoiliac reconstruction operations performed on human cadavers; one was performed according to a single-blind procedure, the second with a modified procedure. Results: The lumbar splanchnic nerves supplying the superior hypogastric plexus from the right side were found to be less voluminous than the left-sided ones. The superior hypogastric plexus was found slightly shifted to the left of the midsagittal plane across the abdominal aorta and its bifurcation. Microscopic analysis revealed a thin fascia between the aorta and the subperitoneal tissue compartment. This fascia was used as a plain of dissection to mobilize the preaortic nerve-plexuses without damage from the aortic wall. Analysis of the specimens operated on showed a significant difference in nerve disruption. The standard procedure caused total disruption of the superior hypogastric plexus and extensive disruption of the inferior mesenteric plexus. The modified procedure only caused right-sided unilateral disruption of lumbar splanchnic nerves. Conclusion: The autonomic nerves supplying the bladder neck, the vas deferens, and the prostate are closely related to the abdominal aorta and its bifurcation. Right-sided unilateral disruption of lumbar splanchnic nerves without further damage to nervous structures would ensure at least one functional sympathetic pathway remaining after aortoiliac reconstruction surgery. (J Vasc Surg 2001;33:983-9.
How to fulfill the expert role in public dialogue:The Dutch dialogue on human germline genetic modification as a case
Over the last decades science communication theory appears to have evolved at a much faster pace than science communication practice. Scientists seem willing to step into the public domain, but a genuine two-way interaction with the public is only rarely observed. We argue that part of this discrepancy between theory and practice may actually be caused by the lacking of a clear description of the modern expert role; the role a scientist should take in contemporary science communication. In this contribution we use an example of good practice—the Dutch dialogue on human germline genetic modification—to inform theory. We analyse guiding principles for the design and execution of this dialogue and observe expert behavior in three separate dialogue sessions. With the combined findings, we present a detailed description of the modern expert role in terms of three responsibilities, with for each responsibility three prompts for behavior. For the responsibility to share these are to select expert knowledge that is relevant to the goal; to present expert knowledge in a meaningful and accessible language; and to be cautious in sharing personal considerations. For the responsibility to listen and learn these are to consider interactions with members of the public as opportunities to learn; to be patient and supportive; and to assist in stimulating in-depth dialogue. For the responsibility to invest in relationships these are to assist in creating an ambiance of safety and relevance; to preserve trust; and to convey respect for every contribution and every point of view. Each behavioral prompt is further concretized with concomitant actions and practice examples as collected from observing experts in action. The implications for scientists engaging in contemporary science communication, as well as for science communication trainers, are discussed.</p
Accessory thyroid gland at carotid bifurcation presenting as a carotid body tumor: case report and review of the literature
AbstractPatients with carotid body tumors referred to vascular surgeons usually undergo magnetic resonance imaging (MRI) as part of the workup. We present a case report of a 39-year-old woman with a presumed carotid body tumor, as was expected from clinical and MRI findings. At surgery, the ectopic thyroid tissue was suspected, and resection was performed. Histologic examination showed normal thyroid tissue with no sign of malignancy. Postoperative thyroid analysis showed a normally located, properly functioning thyroid gland. Ectopic thyroid glands are generally found in the midline, as a result of abnormal median migration. Their presence lateral to the midline with a proper functioning thyroid gland in its normal position is extremely rare. Although several submandibular thyroid glands have been reported, a close relation with the carotid arteries was described only once. When MRI scans of a presumed carotid body tumor show tumor characteristics that are not fully specific for a carotid body tumor, the possibility of ectopic thyroid tissue should be entertained, which can be the patient's only properly functioning thyroid tissue. In such cases, additional assessment, including thyroid tests, should be considered before surgery
The role of clustering and gridlike ordering in epidemic spreading
The spreading of an epidemic is determined by the connectiviy patterns which
underlie the population. While it has been noted that a virus spreads more
easily on a network in which global distances are small, it remains a great
challenge to find approaches that unravel the precise role of local
interconnectedness. Such topological properties enter very naturally in the
framework of our two-timestep description, also providing a novel approach to
tract a probabilistic system. The method is elaborated for SIS-type epidemic
processes, leading to a quantitative interpretation of the role of loops up to
length 4 in the onset of an epidemic.Comment: Submitted to Phys. Rev. E; 15 pages, 11 figures, 5 table
Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors
INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their contribution to post-flight cases. Prior history of back pain included back pain recorded in the medical record within 3 years prior to launch. Landing vehicle was included in the model to discern if more astronauts experienced back pain or injury following a Shuttle or Soyuz landing. Onboard exercise countermeasures were noted for those astronauts who had a mission following 2009 deployment of the Advanced Resistive Exercise Device (aRED) (EXP 19 to 41). T-test and chi-squared tests were performed to evaluate the association between each individual risk factor and post-flight case. Logistic regression was used to evaluate the combined contribution of all the risk factors on post-flight cases. Separate models were calculated for cases reported by R + 45 and R + 1y. RESULTS During the study time period, there were 13 post-flight cases reported by R + 45 and an additional 5 reported by R + 1y. Most of these cases have been reported since EXP 19 with 10 cases by R + 45 and 4 by R + 1y. Individual risk factors of age, sex, landing vehicle, and prior military service were not significantly associated with post-flight cases identified at R + 45 or R + 1y (p greater than 0.05). Having back pain or injury within 3 years prior to launch significantly increased the likelihood of becoming a case by R + 1y (p = 0.041), but not at R+45 (p=0.204). Additionally, astronauts who experienced onboard exercise countermeasures that included aRED had a significantly increased risk of becoming a case at R + 45 (p = 0.024) and R + 1y (p=0.003). Multiple logistic regression evaluating all the risk factors for cases identified no significant risk factors at either the R + 45 or R + 1y time period (p greater than 0.05). Overall model fit was poor for both the R + 45 (R(exp 2) = 0.132) and R + 1y (R(exp 2) = 0.186) cases showing that there are risk factors not represented in our model. CONCLUSIONS Regardless of cause, post-flight cases are reported more often since aRED was deployed in 2009. This may reflect improved documentation or unidentified risk factors. No spaceflight risk factor explains the data fully. Post-flight cases are probably due to multi-faceted factors that are not easily elucidated in the medical data
Colonoscopy Screening in the US Astronaut Corps
Historically, colonoscopy screenings for astronauts have been conducted to ensure that astronauts are in good health for space missions. This data has been identified as being useful for determining appropriate occupational surveillance targets and requirements. Colonoscopies in the astronaut corps can be used for: (a) Assessing overall colon health, (b) A point of reference for future tests in current and former astronauts, (c) Following-up and tracking rates of colorectal cancer and polyps; and (d) Comparison to military and other terrestrial populations. In 2003, medical screening requirements for the active astronaut corps changed to require less frequent colonoscopies. Polyp removal during a colonoscopy is an intervention that prevents the polyp from potentially developing into cancer and decreases the individual's risk for colon cancer
- …