27 research outputs found

    The chemiluminescent peroxyoxalate system: state of the art almost 50 years from its discovery

    Get PDF
    Almost fifty years after the discovery of the peroxyoxalate reaction by E. A. Chandross in the early nineteen sixties, this review article intends to give a general overview on mechanistic aspects of this system and to describe the principles of its analytical application. After a short general introduction on the principles of chemiluminescence and the history of peroxyoxalate discovery, mechanistic aspects of high-energy intermediate formation, its structure and its reaction with an activator in the peroxyoxalate system are discussed. Finally, analytical applications of peroxyoxalate chemiluminescence are exemplified using representative recent examples, including oxalic acid detection in biological samples.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Deutscher Akademischer Austauschdienst (DAAD)Deutscher Akademischer Austausch Dienst (DAAD)Coordenadoria de Aperfeicoamento de Pessoal de Ensino Superior (CAPES)Coordenadoria de Aperfeicoamento de Pessoal de Ensino Superior (CAPES

    "Photo" Chemistry Without Light?

    No full text
    In the early seventies, Giuseppe Cilento (São Paulo University), Emil White (Johns Hopkins University) and Angelo Lamola (AT&T Bell Laboratories) postulated that typical photochemical reactions could occur in dark parts of living organisms if coupled to enzymatic sources of electronically excited products. Their paradoxical hypothesis of "photochemistry without light" was chemically anchored on the synthesis and weak chemiluminescence of several 1,2-dioxetanes, unstable cyclic peroxides whose thermal cleavage produces long-lived and reactive triplet carbonyls. Collisional reactions or energy transfer of triplet species to cellular targets could eventually result in "photo" products that potentially trigger normal or pathological responses. These ideas flourished in the labs of various researchers who attempted to explain the presence and biological roles of "dark" secondary metabolites, including plant hormones, pyrimidine dimers, alkaloid lumi-isomers, protein adducts, and mitochondrial permeators, thereby broadening the field of photobiology

    The Molecular Basis of Organic Chemiluminescence

    No full text
    Bioluminescence (BL) and chemiluminescence (CL) are interesting and intriguing phenomena that involve the emission of visible light as a consequence of chemical reactions. The mechanistic basis of BL and CL has been investigated in detail since the 1960s, when the synthesis of several models of cyclic peroxides enabled mechanistic studies on the CL transformations, which led to the formulation of general chemiexcitation mechanisms operating in BL and CL. This review describes these general chemiexcitation mechanisms—the unimolecular decomposition of cyclic peroxides and peroxide decomposition catalyzed by electron/charge transfer from an external (intermolecular) or an internal (intramolecular) electron donor—and discusses recent insights from experimental and theoretical investigation. Additionally, some recent representative examples of chemiluminescence assays are given

    Evaluation of Antiradical Capacity by H 2

    No full text

    Direct Kinetic Observation of the Chemiexcitation Step in Peroxyoxalate Chemiluminescence

    No full text
    A high-energy intermediate in the peroxyoxalate reaction can be accumulated at room temperature under specific reaction conditions and in the absence of any reducing agent in up to micromolar concentrations. Bimolecular interaction of this intermediate, accumulated in the reaction of oxalyl chloride with hydrogen peroxide, with an activator (highly fluorescent aromatic hydrocarbons with low oxidation potential) added in delay shows unequivocally that this intermediate is responsible for chemiexcitation of the activator. Activation parameters for the unimolccular decomposition of this intermediate (Delta H(double dagger) = 11.2 kcal mol(-1); Delta S(double dagger) = -23.2 cal mol(-1) K(-1)) and for its bimolecular reaction with 9,10-diphenylanthracene (Delta H(double dagger) = 4.2 kcal mol(-1); Delta S(double dagger) = -26.9 cal mol(-1) K(-1)) show that this intermediate is much less stable than typical 1,2-dioxetanes and 1,2-dioxetanones and demonstrate its highly favored interaction with the activator. Therefore, it can be inferred that structural characterization of the high-energy intermediate in the presence of an activator must be highly improbable. The observed linear free-energy correlation between the catalytic rate constants and the oxidation potentials of several activators definitely confirms the occurrence of the chemically initiated electron-exchange luminescence (CIEEL) mechanism in the chemiexcitation step of the peroxyoxalate system.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESPDAADDAADCAPECAP

    Solvent Cage Effects: Basis of a General Mechanism for Efficient Chemiluminescence

    No full text
    The induced decomposition of 1,2-dioxetanes results in the efficient formation of singlet-excited carbonyl compounds. This transformation has been assumed to involve two sequential electron-transfer steps, and the viscosity dependence of the chemiexcitation efficiency (solvent cage effect) has been considered as evidence for the occurrence of an intermolecular electron back-transfer, despite the very high chemiexcitation quantum yields observed. However, all other chemiluminescent reactions assumed to occur according to the entirely intermolecular mechanism, referred to as CIEEL, are inefficient, except for the peroxyoxalate system. Therefore, we have investigated the solvent cage effect on the singlet quantum yields in both the induced decomposition of 1,2-dioxetanes and the peroxyoxalate reaction. Analysis of the viscosity effect observed for both systems, using a collisional as well as a free-volume model, indicates a very distinct behavior, which was interpreted as the occurrence of intramolecular chemiexcitation in the induced 1,2-dioxetane decomposition. We propose a general mechanism for efficient chemiluminescence in which the required electron back-transfer and C–C bond cleavage are concerted and compete with conformational changes that compromise the chemiexcitation. This mechanism is in agreement with both experimental and theoretical data available on the induced 1,2-dioxetane decomposition as well as with the high quantum efficiency of this transformation

    Experimental Evidence of the Occurrence of Intramolecular Electron Transfer in Catalyzed 1,2-Dioxetane Decomposition

    No full text
    The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of rho = 1.3 +/- 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2005/58320-4]Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF)Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF)Deutscher Akademischer Austauschdienst (DAAD)Deutscher Akademischer Austauschdienst (DAAD)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Coordenadoria de Aperfeicoamento de Pessoal de Ensino Superior (CAPES)[BEX 1132/04-0
    corecore