830 research outputs found

    Disentangling synergistic disease dynamics: Implications for the viral biocontrol of rabbits

    Get PDF
    European rabbits (Oryctolagus cuniculus) have been exposed to rabbit haemorrhagic disease virus (RHDV) and myxoma virus (MYXV) in their native and invasive ranges for decades. Yet, the long‐term effects of these viruses on rabbit population dynamics remain poorly understood.In this context, we analysed 17 years of detailed capture–mark–recapture data (2000–2016) from Turretfield, South Australia, using a probabilistic state‐space hierarchical modelling framework to estimate rabbit survival and epidemiological dynamics.While RHDV infection and disease‐induced death were most prominent during annual epidemics in winter and spring, we found evidence for continuous infection of susceptible individuals with RHDV throughout the year. RHDV‐susceptible rabbits had, on average, 25% lower monthly survival rates compared to immune individuals, while the average monthly force of infection in winter and spring was ∌38%. These combined to result in an average infection‐induced mortality rate of 69% in winter and spring.Individuals susceptible to MYXV and immune to RHDV had similar survival probabilities to those having survived infections from both viruses, whereas individuals susceptible to both RHDV and MYXV had higher survival probabilities than those susceptible to RHDV and immune to MYXV. This suggests that MYXV may reduce the future survival rates of individuals that endure initial MYXV infection.There was no evidence for long‐term changes in disease‐induced mortality and infection rates for either RHDV or MYXV.We conclude that continuous, year‐round virus perpetuation (and perhaps heterogeneity in modes of transmission and infectious doses during and after epidemics) acts to reduce the efficiency of RHDV and MYXV as biocontrol agents of rabbits in their invasive range. However, if virulence can be maintained as relatively constant through time, RHDV and MYXV will likely continue realizing strong benefits as biocontrol agents

    Intensified therapies improve survival and identification of novel prognostic factors for placental-site and epithelioid trophoblastic tumours

    Get PDF
    BACKGROUND: Placental-site trophoblastic (PSTT) and epithelioid trophoblastic tumours (ETT) are the rarest malignant forms of gestational trophoblastic disease (GTD). Our prior work demonstrated that an interval of ≄48 months from the antecedent pregnancy was associated with 100% death rate, independent of the stage. Here, we assess whether modified treatments for these patients have increased survival and identify new prognostic factors. METHODS: The United Kingdom GTD database was screened to identify all PSTT/ETT cases diagnosed between 1973 and 2014. Data and survival outcomes from our prior patient cohort (1976–2006) were compared to our new modern cohort (2007–2014), when intensified treatments were introduced. RESULTS: Of 54,743 GTD patients, 125 (0.23%) were diagnosed with PSTT and/or ETT. Probability of survival at 5 and 10 years following treatment was 80% (95% CI 72.8–87.6%) and 75% (95% CI 66.3–84.3%), respectively. Univariate analysis identified five prognostic factors for reduced overall survival (age, FIGO stage, time since antecedent pregnancy, hCG level, mitotic index) of which stage IV disease (HR 6.18, 95% CI 1.61–23.81, p = 0.008) and interval ≄48 months since antecedent pregnancy (HR 14.57, 95% CI 4.17–50.96, p < 0.001) were most significant on multivariable analysis. No significant differences in prognostic factors were seen between the old and new patient cohort. However, the new cohort received significantly more cisplatin-based and high-dose chemotherapy, and patients with an interval ≄48 months demonstrated an improved median overall survival (8.3 years, 95% CI 1.53–15.1, versus 2.6 years, 95% CI 0.73–4.44, p = 0.·005). CONCLUSION: PSTT/ETT with advanced FIGO stage or an interval ≄48 months from their last known pregnancy have poorer outcomes. Platinum-based and high-dose chemotherapy may help to improve survival in poor-prognosis patients

    Aerodynamics of the Hovering Hummingbird

    Full text link
    Despite profound musculoskeletal differences, hummingbirds (Trochilidae) are widely thought to employ aerodynamic mechanisms similar to those used by insects. The kinematic symmetry of the hummingbird upstroke and downstroke has led to the assumption that these halves of the wingbeat cycle contribute equally to weight support during hovering, as exhibited by insects of similar size. This assumption has been applied, either explicitly or implicitly, in widely used aerodynamic models, and in a variety of empirical tests. Here we provide measurements of the wake of hovering rufous hummingbirds (Selasphorus rufus) obtained with digital particle image velocimetry that show force asymmetry: hummingbirds produce 75% of their weight support during the downstroke and only 25% during the upstroke. Some of this asymmetry is probably due to inversion of their cambered wings during upstroke. The wake of hummingbird wings also reveals evidence of leading-edge vortices created during the downstroke, indicating that they may operate at Reynolds numbers sufficiently low to exploit a key mechanism typical of insect hovering. Hummingbird hovering approaches that of insects, yet remains distinct because of effects resulting from an inherently dissimilar—avian—body plan

    Pathotyping the Zoonotic Pathogen Streptococcus suis: Novel Genetic Markers To Differentiate Invasive Disease-Associated Isolates from Non-Disease-Associated Isolates from England and Wales.

    Get PDF
    Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) Knowledge Transfer Network CASE studentship co-funded by Zoetis (previously Pfizer Animal Health UK) and with significant contribution from BQP Ltd (Award Reference: BB/L502479/1). Funding bodies provided scholarship support but had no part in study design, data collection, analysis and interpretation of data or in writing the manuscript. AWT is supported by a BBSRC Longer and Larger (LoLa) grant (Award Reference: BB/G019274/1). LAW is supported by a Dorothy Hodgkin Fellowship funded by the Royal Society (Grant Number: DH140195) and a Sir Henry Dale Fellowship co-funded by the Royal Society and Wellcome Trust (Grant Number: 109385/Z/15/Z)

    Trauma history and depression predict incomplete adherence to antiretroviral therapies in a low income country.

    Get PDF
    As antiretroviral therapy (ART) for HIV becomes increasingly available in low and middle income countries (LMICs), understanding reasons for lack of adherence is critical to stemming the tide of infections and improving health. Understanding the effect of psychosocial experiences and mental health symptomatology on ART adherence can help maximize the benefit of expanded ART programs by indicating types of services, which could be offered in combination with HIV care. The Coping with HIV/AIDS in Tanzania (CHAT) study is a longitudinal cohort study in the Kilimanjaro Region that included randomly selected HIV-infected (HIV+) participants from two local hospital-based HIV clinics and four free-standing voluntary HIV counselling and testing sites. Baseline data were collected in 2008 and 2009; this paper used data from 36 month follow-up interviews (N = 468). Regression analyses were used to predict factors associated with incomplete self-reported adherence to ART. INCOMPLETE ART ADHERENCE WAS SIGNIFICANTLY MORE LIKELY TO BE REPORTED AMONGST PARTICIPANTS WHO EXPERIENCED A GREATER NUMBER OF CHILDHOOD TRAUMATIC EVENTS: sexual abuse prior to puberty and the death in childhood of an immediate family member not from suicide or homicide were significantly more likely in the non-adherent group and other negative childhood events trended toward being more likely. Those with incomplete adherence had higher depressive symptom severity and post-traumatic stress disorder (PTSD). In multivariable analyses, childhood trauma, depression, and financial sacrifice remained associated with incomplete adherence.\ud This is the first study to examine the effect of childhood trauma, depression and PTSD on HIV medication adherence in a low income country facing a significant burden of HIV. Allocating spending on HIV/AIDS toward integrating mental health services with HIV care is essential to the creation of systems that enhance medication adherence and maximize the potential of expanded antiretroviral access to improve health and reduce new infections

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations

    Cosmic Flows on 100 Mpc/h Scales: Standardized Minimum Variance Bulk Flow, Shear and Octupole Moments

    Get PDF
    The low order moments, such as the bulk flow and shear, of the large scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal ``minimum variance'' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ~ 100 Mpc/h has a magnitude of |v|= 416 +/- 78 km/s towards Galactic l = 282 degree +/- 11 degree and b = 6 degree +/- 6 degree. This result is in disagreement with LCDM with WMAP5 cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances.Comment: 13 Pages, 7 figures, 4 tables. Some changes to reflect the published versio

    Non-invasive MR imaging techniques for measuring femoral arterial flow in a pediatric and adolescent cohort

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordMagnetic Resonance Imaging (MRI) is well-suited for imaging peripheral blood flow due to its non-invasive nature and excellent spatial resolution. Although MRI is routinely used in adults to assess physiological changes in chronic diseases, there are currently no MRI-based data quantifying arterial flow in pediatric or adolescent populations during exercise. Therefore the current research sought to document femoral arterial blood flow at rest and following exercise in a pediatric-adolescent population using phase contrast MRI, and to present test-retest reliability data for this method. Ten healthy children and adolescents (4 male; mean age 14.8 ± 2.4 years) completed bloodwork and resting and exercise MRI. Baseline images consisted of PC-MRI of the femoral artery at rest and following a 5 × 30 s of in-magnet exercise. To evaluate test-retest reliability, five participants returned for repeat testing. All participants successfully completed exercise testing in the MRI. Baseline flow demonstrated excellent reliability (ICC = 0.93, p = 0.006), and peak exercise and delta rest-peak flow demonstrated good reliability (peak exercise ICC = 0.89, p = 0.002, delta rest-peak ICC = 0.87, p = 0.003) between-visits. All three flow measurements demonstrated excellent reliability when assessed with coefficients of variance (CV's) (rest: CV = 6.2%; peak exercise: CV = 7.3%; delta rest-peak: CV = 7.1%). The mean bias was small for femoral arterial flow. There was no significant mean bias between femoral artery flow visits 1 and 2 at peak exercise. There were no correlations between age or height and any of the flow measurements. There were no significant differences between male and female participants for any of the flow measurements. The current study determined that peripheral arterial blood flow in children and adolescents can be evaluated using non-invasive phase contrast MRI. The MRI-based techniques that were used in the current study for measuring arterial flow in pediatric and adolescent patients demonstrated acceptable test-retest reliability both at rest and immediately post-exercise.Cystic Fibrosis TrustExercise Medicine Fund at the Hospital for Sick Children (Canada

    Wave-swept coralliths of Saba Bank, Dutch Caribbean

    Get PDF
    • 

    corecore