48 research outputs found
Conservation must capitalise on climate’s moment
The health of the natural environment has never been a greater concern, but attention to biodiversity loss is being eclipsed by the climate crisis. We argue that conservationists must seize the agenda to put biodiversity at the heart of climate policy
A Novel Approach for Ellipsoidal Outer-Approximation of the Intersection Region of Ellipses in the Plane
In this paper, a novel technique for tight outer-approximation of the
intersection region of a finite number of ellipses in 2-dimensional (2D) space
is proposed. First, the vertices of a tight polygon that contains the convex
intersection of the ellipses are found in an efficient manner. To do so, the
intersection points of the ellipses that fall on the boundary of the
intersection region are determined, and a set of points is generated on the
elliptic arcs connecting every two neighbouring intersection points. By finding
the tangent lines to the ellipses at the extended set of points, a set of
half-planes is obtained, whose intersection forms a polygon. To find the
polygon more efficiently, the points are given an order and the intersection of
the half-planes corresponding to every two neighbouring points is calculated.
If the polygon is convex and bounded, these calculated points together with the
initially obtained intersection points will form its vertices. If the polygon
is non-convex or unbounded, we can detect this situation and then generate
additional discrete points only on the elliptical arc segment causing the
issue, and restart the algorithm to obtain a bounded and convex polygon.
Finally, the smallest area ellipse that contains the vertices of the polygon is
obtained by solving a convex optimization problem. Through numerical
experiments, it is illustrated that the proposed technique returns a tighter
outer-approximation of the intersection of multiple ellipses, compared to
conventional techniques, with only slightly higher computational cost
Appeals to evidence for the resolution of wicked problems: the origins and mechanisms of evidentiary bias
Wicked policy problems are often said to be characterized by their ‘intractability’, whereby appeals to evidence are unable to provide policy resolution. Advocates for ‘Evidence Based Policy’ (EBP) often lament these situations as representing the misuse of evidence for strategic ends, while critical policy studies authors counter that policy decisions are fundamentally about competing values, with the (blind) embrace of technical evidence depoliticizing political decisions. This paper aims to help resolve these conflicts and, in doing so, consider how to address this particular feature of problem wickedness. Specifically the paper delineates two forms of evidentiary bias that drive intractability, each of which is reflected by contrasting positions in the EBP debates: ‘technical bias’ - referring to invalid uses of evidence; and ‘issue bias’ - referring to how pieces of evidence direct policy agendas to particular concerns. Drawing on the fields of policy studies and cognitive psychology, the paper explores the ways in which competing interests and values manifest in these forms of bias, and shape evidence utilization through different mechanisms. The paper presents a conceptual framework reflecting on how the nature of policy problems in terms of their complexity, contestation, and polarization can help identify the potential origins and mechanisms of evidentiary bias leading to intractability in some wicked policy debates. The discussion reflects on whether being better informed about such mechanisms permit future work that may lead to strategies to mitigate or overcome such intractability in the future
A New Strategy to Generate Functional Insulin-Producing Cell Lines by Somatic Gene Transfer into Pancreatic Progenitors
BACKGROUND: There is increasing interest in developing human cell lines to be used to better understand cell biology, but also for drug screening, toxicology analysis and future cell therapy. In the endocrine pancreatic field, functional human beta cell lines are extremely scarce. On the other hand, rodent insulin producing beta cells have been generated during the past years with great success. Many of such cell lines were produced by using transgenic mice expressing SV40T antigen under the control of the insulin promoter, an approach clearly inadequate in human. Our objective was to develop and validate in rodent an alternative transgenic-like approach, applicable to human tissue, by performing somatic gene transfer into pancreatic progenitors that will develop into beta cells. METHODS AND FINDINGS: In this study, rat embryonic pancreases were transduced with recombinant lentiviral vector expressing the SV40T antigen under the control of the insulin promoter. Transduced tissues were next transplanted under the kidney capsule of immuno-incompetent mice allowing insulinoma development from which beta cell lines were established. Gene expression profile, insulin content and glucose dependent secretion, normalization of glycemia upon transplantation into diabetic mice validated the approach to generate beta cell lines. CONCLUSIONS: Somatic gene transfer into pancreatic progenitors represents an alternative strategy to generate functional beta cell lines in rodent. Moreover, this approach can be generalized to derive cells lines from various tissues and most importantly from tissues of human origin
Differentiating Embryonic Stem Cells Pass through ‘Temporal Windows’ That Mark Responsiveness to Exogenous and Paracrine Mesendoderm Inducing Signals
BACKGROUND: Mesendoderm induction during embryonic stem cell (ESC) differentiation in vitro is stimulated by the Transforming Growth Factor and Wingless (Wnt) families of growth factors. PRINCIPAL FINDINGS: We identified the periods during which Bone Morphogenetic Protein (BMP) 4, Wnt3a or Activin A were able to induce expression of the mesendoderm marker, Mixl1, in differentiating mouse ESCs. BMP4 and Wnt3a were required between differentiation day (d) 1.5 and 3 to most effectively induce Mixl1, whilst Activin A induced Mixl1 expression in ESC when added between d2 and d4, indicating a subtle difference in the requirement for Activin receptor signalling in this process. Stimulation of ESCs with these factors at earlier or later times resulted in little Mixl1 induction, suggesting that the differentiating ESCs passed through 'temporal windows' in which they sequentially gained and lost competence to respond to each growth factor. Inhibition of either Activin or Wnt signalling blocked Mixl1 induction by any of the three mesendoderm-inducing factors. Mixing experiments in which chimeric EBs were formed between growth factor-treated and untreated ESCs revealed that BMP, Activin and Wnt signalling all contributed to the propagation of paracrine mesendoderm inducing signals between adjacent cells. Finally, we demonstrated that the differentiating cells passed through 'exit gates' after which point they were no longer dependent on signalling from inducing molecules for Mixl1 expression. CONCLUSIONS: These studies suggest that differentiating ESCs are directed by an interconnected network of growth factors similar to those present in early embryos and that the timing of growth factor activity is critical for mesendoderm induction
Adaptive Management of Riverine Socio-ecological Systems
If ongoing change in ecosystems and society can render inflexible policies obsolete, then management must dynamically adapt as a counter to perennial uncertainty. This chapter describes a general synthesis of how to make decision-making more adaptive and then explores the barriers to learning in management. We then describe how one such process, known as adaptive management (AM), has been applied in different river basins, on which basis we discuss AM’s strengths and limitations in various resource management contexts
Present state and future perspectives of using pluripotent stem cells in toxicology research
The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed