32 research outputs found

    A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    Get PDF
    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD

    Linkage study of fibrinogen levels: the Strong Heart Family Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathogenesis of atherosclerosis involves both hemostatic and inflammatory mechanisms. Fibrinogen is associated with both risk of thrombosis and inflammation. A recent meta-analysis showed that risk of coronary heart disease may increase 1.8 fold for 1 g/L of increased fibrinogen, independent of traditional risk factors. It is known that fibrinogen levels may be influenced by demographic, environmental and genetic factors. Epidemiologic and candidate gene studies are available; but few genome-wide linkage studies have been conducted, particularly in minority populations. The Strong Heart Study has demonstrated an increased incidence of cardiovascular disease in the American Indian population, and therefore represents an important source for genetic-epidemiological investigations.</p> <p>Methods</p> <p>The Strong Heart Family Study enrolled over 3,600 American Indian participants in large, multi-generational families, ascertained from an ongoing population-based study in the same communities. Fibrinogen was determined using standard technique in a central laboratory and extensive additional phenotypic measures were obtained. Participants were genotyped for 382 short tandem repeat markers distributed throughout the genome; and results were analyzed using a variance decomposition method, as implemented in the SOLAR 2.0 program.</p> <p>Results</p> <p>Data from 3535 participants were included and after step-wise, linear regression analysis, two models were selected for investigation. Basic demographic adjustments constituted model 1, while model 2 considered waist circumference, diabetes mellitus and postmenopausal status as additional covariates. Five LOD scores between 1.82 and 3.02 were identified, with the maximally adjusted model showing the highest score on chromosome 7 at 28 cM. Genes for two key components of the inflammatory response, i.e. interleukin-6 and "signal transducer and activator of transcription 3" (<it>STAT3</it>), were identified within 2 and 8 Mb of this 1 LOD drop interval respectively. A LOD score of 1.82 on chromosome 17 between 68 and 93 cM is supported by reports from two other populations with LOD scores of 1.4 and 1.95.</p> <p>Conclusion</p> <p>In a minority population with a high prevalence of cardiovascular disease, strong evidence for a novel genetic determinant of fibrinogen levels is found on chromosome 7 at 28 cM. Four other loci, some of which have been suggested by previous studies, were also identified.</p

    Null diffusion-based enrichment for metabolomics data

    Get PDF
    Metabolomics experiments identify metabolites whose abundance varies as the conditions under study change. Pathway enrichment tools help in the identification of key metabolic processes and in building a plausible biological explanation for these variations. Although several methods are available for pathway enrichment using experimental evidence, metabolomics does not yet have a comprehensive overview in a network layout at multiple molecular levels. We propose a novel pathway enrichment procedure for analysing summary metabolomics data based on sub-network analysis in a graph representation of a reference database. Relevant entries are extracted from the database according to statistical measures over a null diffusive process that accounts for network topology and pathway crosstalk. Entries are reported as a sub-pathway network, including not only pathways, but also modules, enzymes, reactions and possibly other compound candidates for further analyses. This provides a richer biological context, suitable for generating new study hypotheses and potential enzymatic targets. Using this method, we report results from cells depleted for an uncharacterised mitochondrial gene using GC and LC-MS data and employing KEGG as a knowledge base. Partial validation is provided with NMR-based tracking of 13C glucose labelling of these cells.Peer ReviewedPostprint (author's final draft

    Variation in the hatching response of Ochlerotatus albifasciatus egg batches (Diptera: Culicidae) in temperate Argentina

    Get PDF
    Egg hatching of winter-collected Ochlerotatus albifasciatus was studied for six months. Batches of eggs were divided into two groups, one of them was stored in the laboratory at 23&deg;C and 12:12 photoperiod, and the other in the field under dead leaves. Every month, from July to December, eggs from the two groups were flooded under both laboratory and field conditions. Unhatched eggs were returned to the original condition and flooded two more times separated by ten-day intervals. Results show that egg diapause is expressed in different intensities, not only on eggs exposed to different conditions but also in those exposed to the same condition, even when they were laid by the same female. Successive inundations yielded incomplete hatches of eggs, and favored the hatching response in the next flooding. Low environmental temperatures before and during the flooding depressed hatching response. This shows that eggs need a warm period before flooding as well as warm temperatures during flooding, to hatch. As drought period was longer hatching response increased, but this was also accompanied by warmer environmental conditions. The experiment performed in laboratory did not show that increment. Field studies showed that a layer of dead leaves protected eggs from extreme temperatures
    corecore