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Abstract

Metabolomics experiments identify metabolites whose abundance varies as the
conditions under study change. Pathway enrichment tools help in the identification of
key metabolic processes and in building a plausible biological explanation for these
variations. Although several methods are available for pathway enrichment using
experimental evidence, metabolomics does not yet have a comprehensive overview in a
network layout at multiple molecular levels. We propose a novel pathway enrichment
procedure for analysing summary metabolomics data based on sub-network analysis in a
graph representation of a reference database. Relevant entries are extracted from the
database according to statistical measures over a null diffusive process that accounts for
network topology and pathway crosstalk. Entries are reported as a sub-pathway
network, including not only pathways, but also modules, enzymes, reactions and
possibly other compound candidates for further analyses. This provides a richer
biological context, suitable for generating new study hypotheses and potential
enzymatic targets. Using this method, we report results from cells depleted for an
uncharacterised mitochondrial gene using GC and LC-MS data and employing KEGG
as a knowledge base. Partial validation is provided with NMR-based tracking of 13C
glucose labelling of these cells.

Introduction 1

Metabolomics is the science that studies the chemical reactions taking place in a living 2

organism by measuring their lightweight reactants and products, also called metabolites. 3

Metabolomics is used in the study of human disease, biomarker identification, drug 4

evaluation and treatment prognosis [1]. Metabolomics datasets are generated from the 5
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identification and quantification of the metabolites in a sample. Afterwards, statistical 6

analysis of the datasets enables researchers to devise a plausible explanation for the 7

changes identified and to understand the underlying biological processes involved [2]. 8

Current methods to measure metabolites mainly rely on Nuclear Magnetic 9

Resonance (NMR) and Mass Spectrometry (MS) technologies [3], the latter consisting of 10

two broad categories: Liquid Chromatography and Gas Chromatography coupled to MS 11

(LC/MS and GC/MS). Raw data processing, also known as primary analysis, can be 12

achieved using tools including MeltDB [4], MetaboAnalyst [5], MAIT [6], along with 13

spectral databases [7] like the Human Metabolome Database [8], resulting in a table of 14

relative metabolite abundances. 15

Data interpretation, known as secondary analysis, benefits from the identification of 16

metabolic pathways to draw conclusions, encouraging the use of so-called pathway 17

enrichment techniques. Their purpose is to provide the metabolites with their biological 18

context, drawing from comprehensive databases like Kyoto Encyclopedia of Genes and 19

Genomes, KEGG [9], Reactome [10], WikiPathways [11] and the Small Molecule 20

Pathway Database [11]. Enrichment outputs can be further analysed by manual 21

network manipulation through tools such as Cytoscape [12], whose plug-in 22

MetScape [13] builds networks containing compounds, reactions, enzymes and genes. In 23

this work, pathway enrichment techniques will be divided into three generations, 24

following the review in [14]. 25

The first generation of enrichment techniques is based on Over Representation 26

Analysis (ORA), a statistical test that assesses whether the occurrence of a label within 27

a subset is greater than expected by chance in the background population. Applied to 28

metabolomics, it takes as input the identifiers of affected metabolites (previously 29

determined through a statistical test involving conditions) and assesses a p-value for 30

each pathway. ORA is available through the web tools IMPaLA [15], MetaboAnalyst, 31

MBRole and MPEA [16,17]. Limitations of ORA include an oversimplification of the 32

biology, a thresholding decision issue when generating the input metabolite list and a 33

lower power for capturing subtle and coordinated changes within a pathway [18]. 34

A second generation of enrichment methods, Functional Class Scoring (FCS), avoids 35

the cutoff choice in generating the affected metabolite list and claims the capability of 36

capturing subtle but consistent changes in concentration [2, 19]. This concept was 37

imported from Gene Set Enrichment Analysis [18] and is available through MSEA [20] 38

in MetaboAnalyst and IMPaLA. A shortcoming of FCS methods is that they ignore the 39

network nature of biological pathways [14]. As biological datasets are heterogeneous, 40

and as no method is always best, the researcher’s expertise and prior knowledge remain 41

key factors when choosing between ORA and FCS [21]. 42

The third generation of enrichment techniques attempts to incorporate topological 43

data on the underlying biological networks. This concept was applied early to genetic 44

data through ScorePAGE [22] and is available in current tools like Pathway-Express [23]. 45

For metabolomics data, MetaboAnalyst assigns each metabolic pathway a topological 46

score accounting for the centrality of measured metabolites. 47

Pathway enrichment techniques face challenges, such as dealing with pathway 48

crosstalk and overlap [14] or generating comprehensive outputs rather than pathway 49

p-value lists [21]. Statistical tests that account for pathway crosstalk and overlap have 50

been proposed for gene data [24,25]. Although pathway analysis techniques constitute 51

essential resources for metabolomics secondary analysis, the abstract and artificial 52

borders between pathways may not faithfully reflect biological mechanisms [2]. This 53

issue can be bypassed using sub-network analysis, a secondary analysis procedure to 54

infer relevant biological modules under the condition of study [26] without being limited 55

by pathway definitions. Sub-network analysis has also been applied to the canonical 56

pathways to obtain enrichment in a sub-pathway scale for gene and protein data [27,28]. 57
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Some methods, such as jActiveModules [29], define scores and attempt to find optimally 58

scoring sub-networks. Likewise, diffusion kernels and random walk algorithms that score 59

the nodes of a network, such as PageRank [30], have been applied to genetic 60

data [31,32] and metabolic networks [33]. 61

The HotNet algorithm [31], applied to gene networks, computes pairwise influence 62

measures from node gs to node gi, by introducing a flow on gs and allowing it to leave 63

through all the nodes. The diffusion score of node gi, f
s
i , is interpreted as the influence 64

i(gs, gi). A new undirected graph is built using the weights 65

w(gj , gk) = min[i(gj , gk), i(gk, gj)], in which sub-networks encompassing a large number 66

of gene mutations are sought. TieDIE [32] applies a similar concept, aiming to connect 67

a source and a target gene set. Flow is introduced between the source and the target 68

sets, giving rise to two diffusion processes that score all the nodes. The linking score of 69

each node, defined as the minimum of its two diffusion scores, serves as a ranking to 70

apply a global threshold and report the resulting sub-network. 71

Here we describe the development of an innovative methodology that combines the 72

usefulness of pathway enrichment with the flexibility of sub-network analysis. Starting 73

from summary metabolomics data, we apply a null diffusive process over a 74

network-based representation of the KEGG database and derive a relevant sub-network. 75

Besides offering an overview in the form of a list of affected pathways, we propose a 76

novel sub-pathway representation at several molecular levels that justifies the reported 77

pathways through additional biological entities (reactions, enzymes and KEGG 78

modules) to identify candidates for further study. All of the reported entries, along with 79

their annotations, are drawn in a heterogeneous network layout. 80

Materials and methods 81

Overview 82

An overall scheme of the proposed methodology is presented (Fig 1): on the one hand, 83

we retrieve knowledge from KEGG as a graph object; on the other hand, the input to 84

our algorithm is a list of significantly affected metabolites from an experimental study, 85

obtained for example by applying a non-parametric Wilcoxon test to each metabolite’s 86

abundance. Afterwards, the graph is regarded as a meshed object in which the nodes 87

representing the affected metabolites introduce unitary flow. The resulting node scores 88

are normalised using a null diffusive model, and the top scores define an interpretable 89

relevant subgraph. All this work has been implemented in the R language [34] and the 90

network algorithms rely on the igraph R package [35]. Our R code is under active 91

development and available at https://github.com/b2slab/FELLA. 92

Contextual knowledge is depicted according to the KEGG database (Fig 1), through 93

the following categories: compounds, reactions, enzymes, modules and pathways. This 94

network is specific for Homo sapiens and its construction is detailed in S1 Appendix. 95

Scoring algorithms 96

We derived scores for all the nodes through random walks on the KEGG graph, in order 97

to assess their importance relative to the metabolites in the input. Performing random 98

walks on the undirected graph is equivalent to running a diffusion process; specifically, 99

we model heat diffusion. Conversely, if the graph is directed, the problem matches the 100

PageRank algorithm for website ranking. Both the undirected and the directed versions 101

are applied and referred to as diffusive processes (Fig 1). 102

In the undirected graph case, using a heat diffusion model, we model the biological 103

perturbation in the KEGG graph as heat flow that traverses our KEGG graph. It is 104
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Fig 1. Workflow summary. Contextual knowledge is extracted from KEGG as a graph
object while experimental data is introduced as a list of affected metabolites. A null
diffusive model assesses, and reports in a subgraph, which part of the KEGG graph is
relevant for the input metabolites.
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Fig 2. Nodes arrangement for (a) heat diffusion and (b) PageRank. The affected
metabolites are highlighted with a black ring. For heat diffusion (a), affected
metabolites are forced to generate unitary flow. Every pathway is highlighted with a
blue ring, representing its connection to a cool boundary node. In equilibrium, the
highest temperature pathways (and nodes) will have the greatest heat flow, suggesting a
relevant role in the experiment. For PageRank (b), affected metabolites are the start of
random walks. PageRank scores, represented by the intensity of the blue colour, will
attain higher values in the frequently reached random walk nodes.

important to emphasise that this heat diffusion approach is purely a knowledge 105

propagation abstraction, in no way simulating heat diffusion on the actual biological 106

entities. Heat is forced to flow from nodes corresponding to affected metabolites and 107

through database annotations, leading to a score for each node in the KEGG graph: its 108

stationary temperature (Eq. 1). The rationale behind this approach is that nodes lying 109

close to the affected metabolites, which are heat sources, will hold a higher stationary 110

temperature. This can happen due to great proximity to a particular heat source or to 111

overall closeness to multiple ones. In order to determine the temperatures, we apply the 112

finite difference formulation [36] of the heat equation, using the explicit method, applied 113

to a meshed object (Fig 2a) [37]. 114

T = −KI−1 ·G = RHD ·G (1)

On the one hand, KI is the conductance matrix, where KI = L+B, L being the 115

unnormalised graph Laplacian and B the diagonal adjacency matrix with Bii = 1 if 116
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node i is a pathway and Bii = 0 otherwise. The matrix B ensures that flow can leave 117

the graph through pathways nodes. The matrix RHD is defined as −KI−1, the linear 118

mapping to compute the temperatures. On the other hand, G is the heat generation 119

vector, whose entries Gi are unitary if i is an affected metabolite and 0 otherwise. 120

In our node arrangement (Fig 2a), the affected metabolites constantly introduce heat 121

flow into the structure and only the nodes in the top level (metabolic pathways) are 122

allowed to disperse it. Further details are available in S2 Appendix. 123

In the directed graph case, the PageRank scoring algorithm is a web model that 124

assigns each website a score reflecting the number of incoming hyperlinks as well as the 125

quality of their respective websites. The web surfer performs random walks on a 126

directed graph, with an initial probability distribution over the nodes. In each step, the 127

surfer resumes his random walk with probability d and restarts it with probability 1− d, 128

where d is the damping factor. If the surfer continues, he or she will choose an edge 129

with a probability proportional to its weight. The default computation of PageRank 130

scores is iterative for efficiency reasons, although a formula similar to (Eq. 1) can be 131

derived and will be used in the proposed methods. The damping factor is set to 132

d = 0.85 as in the original publication. 133

The arrangement of nodes for the PageRank calculation is identical to the one for 134

diffusion (Fig 2b), being edges directed towards the upper levels. Random walks start 135

only at the affected metabolites and explore all the reachable nodes. Further details are 136

available in S3 Appendix. 137

Null models 138

The ranking of the network nodes is not achieved through raw scores, due to potential 139

biases related to topological features. This is also the case in classical 140

over-representation analysis, as it can be rephrased as a particular case of heat diffusion 141

(Fig 3) where the observed statistic is the node temperature and its null distribution is 142

the hypergeometric distribution. In view of this, our approach also includes a 143

permutation analysis in the input, leading to a null distribution of scores for each node. 144

Node scores are normalised using their null distributions and ranked, allowing a 145

subgraph (Fig 1) to be extracted. Further details can be found in S4 Appendix. 146

Compounds

Pathway

Pathway A Rest of nodes
Fig 3. Toy example of an over-representation analysis of a hypothetical ”pathway A”
containing 3 metabolites out of a total of 10. The list to be enriched contains 4
metabolites, showing 2 hits in the pathway. The corresponding (Fisher’s exact test)
over-representation can be understood as a diffusion process on the depicted network
followed by a null model. The temperature of pathway A is always coincident with the
number of hits in the pathway, implying that its null distribution is the hypergeometric
distribution, to which a one-tailed temperature comparison is made.

The null model will be introduced in the heat diffusion scenario (the PageRank case 147

is analogous). Let nin be the number of compounds in the input. Then, exactly nin 148

different KEGG compounds are chosen at random following dependent Bernoulli 149

distributions, so that Xi = 1 if i is chosen and Xi = 0 otherwise. Normalisation can be 150

performed using (i) the theoretical mean and variance of the scores, which can be 151

obtained from Eq. 1, using the fact that, for the null model, G is a random vector X 152

with known mean and covariance matrix: 153
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E(Tnull) = RHD · E(X) (2)

Σ(Tnull) = RHD · Σ(X) ·RTHD (3)

The normalised score (z-score) of node i is defined in terms of the expected value 154

µi = E(Tnull)i and standard deviation σi =
√

Σ(Tnull)i,i 155

zi =
Ti − µi
σi

(4)

Then, nodes with the top k scores are kept and reported. Alternatively, scores can 156

be normalised through (ii) Monte Carlo simulations with nperm permutations, which 157

provide an estimate of the probability pi that the null distribution attains a score 158

greater than or equal to the observed one. Estimation of pi involves the empirical 159

cumulative distribution function with a small correction [38], ri being the number of 160

permutations in which the null score of node i is greater or equal than Ti: 161

pi =
ri + 1

nperm + 1
(5)

A consensus solution is derived from nvote independent sets of Monte Carlo trials, 162

each trial reporting the top k nodes. The consensus solution may therefore report a 163

node count not exactly equal to k. 164

NMR validation 165

The reported subgraphs contain entities other than pathways and compounds that can 166

be useful for the researchers. Among these, the highlighted reactions have been partially 167

validated by quantifying their distance to an independent second set of affected 168

metabolites. 169

In order to analyse the reactions in the scope of a metabolic network, distances are 170

computed on the unweighted, maximal connected subgraph containing all the 171

compounds and reactions from the KEGG graph, referred to as the reaction-compound 172

graph. The validation metric is the resistance distance, previously used in the chemical 173

literature [39]. Under these settings, the reported reactions are compared to all the 174

reactions that involve the input metabolites (their nearest neighbours) in terms of their 175

resistance distance to the second set of metabolites. s 176

Evaluation with synthetic signals 177

In order to deploy an analysis of true and false positive pathway identifications, we 178

opted to statistically characterize the pathway prioritisation induced by the diffusion 179

scores. Artificial pathway signals have been generated to (a) find biases in the absence 180

of a signal that might cause false positives, and to (b) quantify the ability to recover 181

true positive pathways. The proposed methods are not directly compared to IMPaLA 182

and MetaboAnalyst due to the lack of a batch analysis mode, but instead to their 183

underlying distribution using Fisher’s exact test. Our Monte Carlo approaches have not 184

been aggregated into consensus solutions. The performance metric is the pathway rank 185

in the list ordered by a method, where 1
np

is the best rank and 1 is the worst one, np 186

being the number of pathways in the KEGG graph. Ranks in Fisher’s exact test are 187

computed using the raw p-values, so that top ranked pathways correspond to lowest 188

p-values. To compute the p-values, a metabolite is considered to belong to a pathway if 189

it can be reached via the pathway in our directed KEGG graph (Fig 2). 190
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In (a), noisy signals are generated and the ranks of all the pathways are calculated 191

within signals. Then, the mean rank of a specific pathway i is computed across all the 192

signals. This measure can reveal pathways that tend to have an extreme rank 193

irrespective of the input. 194

In (b), a target pathway generates the signal and its rank is used as the metric of 195

interest. Methods able to recover the signal will show low ranks in general terms. 196

Description of the experimental data 197

Our method has been tested using data from a case-control experiment aimed at 198

determining the function of an uncharacterised mitochondrial protein by silencing the 199

gene using short hairpin RNAs (shRNA). Metabolites abundances were determined 200

from five replicates of cell cultures expressing either control or experimental shRNA. 201

Metabolite measurements were performed by Metabolon platform 202

(www.metabolon.com) using GC/MS (Thermo-Finnigan Trace DSQ single-quadrupole) 203

and LC/MS (Waters ACQUITY UPLC and a Thermo-Finnigan LTQ-FT). The 204

proprietary Metabolon analysis reported 168 quantified metabolites annotated in the 205

KEGG database. 206

In addition, we have used NMR following the labelling of the same cells with [U-13C] 207

glucose [40] to trace carbon atoms, in order to further validate the conclusions of our 208

new method. The reported reactions are evaluated in terms of their resistance distance 209

to the affected metabolites found by NMR. 210

Description of the synthetic data 211

All the signals generate a list with fixed length nin = 35 for each one of the np pathway 212

nodes in the KEGG graph. Three sampling types have been defined – differences arise 213

in the specification of how much more probable compounds in the target pathway are. 214

The first signal is a uniform sampling of nin compounds that imitates noise: the 215

probability of drawing a compound j within pathway i, pi,j , is ki = 1 times more likely 216

to be drawn than compounds outside the pathway, and thus does not depend on the 217

pathway. 218

In the second signal, compounds belonging to pathway i are ki = 10 times more 219

likely to be drawn. Therefore, there are two different probability values: inside pathway 220

and outside pathway. This sampling is affine to the assumptions in Fisher’s exact test 221

from ORA. 222

As for the third signal, pi,j is proportional to the quantity RHDij , which is greater 223

in compounds close to the pathway. This takes into account the whole KEGG graph, 224

thus being influenced by indirect connections and compound specificity. 225

Results 226

Input for the algorithms 227

After the curation step, our knowledge base graph contains 10,183 nodes and 31,539 228

edges. The nodes are stratified in 288 pathways, 178 modules, 1,149 enzymes, 4,699 229

reactions and 3,869 compounds. The degree distribution of its vertices follow a 230

scale-free network model, where P (k) ∼ k−γ , with γ = 2.084 ∈ [2, 3], see S1 Appendix. 231

On the other hand, MS led to 168 quantified metabolites from KEGG. Two 232

identifiers that each appeared twice have been dropped, as well as a KEGG drug, 233

excluded from the KEGG compound category. The remaining 163 metabolites have 234

been tested between both conditions, leading to 38 significant metabolites (two-tailed 235

PLOS 7/21



non-parametric Wilcoxon, FDR < 0.05), of which 33 have been mapped to our KEGG 236

graph. 237

The 33 MS-derived compounds served as input for each of the proposed enrichment 238

algorithms. Heat Diffusion (HD) and PageRank (PR) are followed by norm (z-score 239

normalisation) or sim (Monte Carlo permutations). Normalised scores have been 240

computed through the null models with nin = 33, followed with subgraph selection with 241

a desired number of nodes k = 250. For simulated methods, a consensus subgraph using 242

nvote = 9 runs of nperm = 10, 000 permutations each has been derived by majority vote 243

on each node. 244

Regardless of the specific details, high diffusion scores are an indicator of overall 245

closeness to the MS-derived metabolites and potential relevance in the condition being 246

studied. This intuition, known as guilt-by-association, can be phrased in the context of 247

heat diffusion: high temperatures are found close to the heat sources. Therefore, warm 248

nodes are candidates for further study as they are easily reached through database 249

annotations from the input metabolites. 250

Null model impact 251

The impact of using the null model in HD and an overview of the random temperatures 252

behaviour is described in Fig 4. The null model is closely related to the graph structure 253

and node topology, quantified through the vertex degree. In Fig 4a, the mean 254

temperatures show different trends for the five levels in the graph; in particular, there is 255

an increase in the mean pathway temperature as the pathway becomes larger. This 256

implies that, regardless of the input, larger pathways will generally show warmer 257

temperatures and the results will be biased towards them. Likewise, the standard 258

deviations of the null temperatures show level-specific changes (Fig 4b), with the 259

compounds being the most affected entities – the higher the degree of the compound, 260

the lower its standard deviation. 261

The usage of z-scores instead of raw temperatures has consequences in the 262

highlighted nodes. Reporting the nodes with the top 250 raw temperatures does not 263

reveal any pathway (Fig 4c), whereas five pathways lay among the top 250 z-scores (Fig 264

4d). Likewise, if only pathway nodes are considered, their ranking using raw 265

temperatures is closely related to the ranking using the mean temperatures from the 266

null model (Fig 5a), which is a property of the graph but not of the experimental data; 267

using z-scores instead corrects this bias (Fig 5b). If the top 20 pathways are selected 268

through their raw temperature, some of them are even below their mean null 269

temperature (Fig 5c), whereas keeping the top 20 z-scores removes the bias towards 270

larger pathways and suggests otherwise overlooked pathways (Fig 5d). 271

Subgraph extraction 272

Four subgraphs have been extracted using the MS-derived compounds. The desired 273

number of nodes k for each approach, together with the actual number of reported nodes 274

and the number of KEGG pathways, are shown in Table 1. A connected component 275

(CC) of an undirected graph is a maximal connected subgraph so that any two nodes in 276

the subgraph are connected by a path. For the directed graphs, the weak CC definition 277

is used, in which directed edges are considered as undirected when computing the CC. 278

The number of nodes belonging to each solution subgraph, along with its largest CC 279

and the number of CCs, are also reported. Additional details regarding the largest CC 280

and number of CCs for other values of k can be found in S5 Appendix. 281

Defining the overlap coefficient between two solutions G1 and G2 as 282

overlap(G1, G2) = |G1∩G2|
min(|G1|,|G2|) , solutions tend to overlap despite their differences 283
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(c) (d)

Legend ● Pathway ● Module ● Enzyme ● Reaction ● Compound (input: )

(a) (b)

Top 250 raw temperatures Top 250 normalised temperatures

Fig 4. Expected value (a) and standard deviation (b) of the null temperatures, stratified by level – jitter applied for visual
purposes and 0.95 confidence intervals computed by the default GAM models in ggplot2 R library [41]. Clear biases arise due
to the node degree, a topological property of the nodes: the larger the pathway, the higher its mean value, and the more
connected a compound is, the smaller its variance. If pathways are ranked by raw temperatures, a large pathway will have an
undesired, consistent advantage over small ones and will be reported too often. The usage of z-scores (d) instead of raw
temperatures (c) to select the top 250 nodes addresses these biases and highlights pathway and module nodes that were
eclipsed by other compounds and reactions with higher mean null temperatures.
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Fig 5. Ranking the 288 KEGG pathways – lower is best– using raw temperatures (a)
biases the ranks towards pathways with higher mean null temperature, which in turn
tend to be large pathways. Using the z-scores instead (b) breaks this clear dependence
and avoids reporting pathways just because of their size. The top 20 pathways through
raw temperatures (c), depicted as black dots, include pathways that are even below
their mean value, while the top 20 z-scores (d) suggest smaller pathways that were
penalised by the aforementioned bias.

Table 1. Summary of the outputs

Name k Pathways Nodes #CC Largest CC
HD norm 250 hsa00250, hsa00270, hsa00480, hsa05230, hsa05231 250 8 206
HD sim 250 hsa00250, hsa00270, hsa00330, hsa00480, hsa05230, hsa05231 261 8 221

PR norm 250 hsa00250, hsa00270, hsa00480, hsa05231 250 9 187
PR sim 250 hsa00250, hsa00270, hsa00480, hsa05231 279 10 152

Summary of the outputs, using diffusion (HD) as well as PageRank (PR), and normalising the scores with Monte Carlo
simulations (sim) or z-scores (norm). Monte Carlo simulations have been run 10,000 times per solution, and 9 solutions have
been computed to build a consensus solution. Note that the desired number of nodes k is slightly different to the number of
nodes actually reported in the Monte Carlo simulations. The last two columns contain the number of connected components
(CC ) and the number of nodes in the largest CC.
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(Table 2). Regarding the stratification of the subgraphs in terms of KEGG categories, 284

they follow a trend similar to the KEGG graph (S5 Appendix). 285

Table 2. Solutions overlap

HD norm HD sim PR norm PR sim
HD norm 1.00 0.82 0.88 0.82
HD sim 0.82 1.00 0.77 0.83

PR norm 0.88 0.77 1.00 0.84
PR sim 0.82 0.83 0.84 1.00

Overlap coefficient statistics for HD and PR. The overlapping nature of solutions is a
sign of consistency among approaches.

Pathway analysis 286

Our methods are compared to IMPaLA and MetaboAnalyst to verify the concordance 287

in terms of metabolic pathways. All the approaches have been compared using the 288

example data from IMPaLA (S2 Table) and MetaboAnalyst (S3 Table), and they show 289

consistent and compatible reports. 290

The results for our dataset are summarised in Table 3 and described in S1 Table, 291

together with further details about the reports of the alternative tools. The metabolic 292

pathways Alanine, aspartate and glutamate metabolism (hsa00250), Cysteine and 293

methionine metabolism (hsa00270) and especially the Glutathione metabolism 294

(hsa00480) recur in all of the approaches. Some of our solutions are more specific, 295

suggesting the module Glutathione Biosynthesis (M00118) as well. Our null model takes 296

pathway overlap and crosstalk into account and allows a visualisation of the pathway 297

structure through the null diffusion correlation matrix (S4 Appendix). 298

Table 3. Reported pathways
KEGG id Pathway name HD norm HD sim PR norm PR sim MA FCS MA ORA IMPaLA ORA
hsa00250 Alanine, aspartate and glutamate metabolism + + + + + + -
hsa00270 Cysteine and methionine metabolism + + + + + + +
hsa00480 Glutathione metabolism + + + + + + +
hsa05230 (hsa00970) Central carbon metabolism in cancer + + - - * - +
hsa05231 (hsa00564) Choline metabolism in cancer + + + + * - -
hsa00260 (M00020) Glycine, serine and threonine metabolism * * - - + - -
hsa00330 (M00133) Arginine and proline metabolism * + - - + - +
hsa00510 (M00073) N-Glycan biosynthesis - - * * - - -

Pathways reported by our methods. ’+’ means a hit for the term reported in the KEGG id column, ’*’ stands for a hit of the
closely related term in parenthesis in the same column and ’-’ states no hit. Our 4 solutions are compared to MetaboAnalyst
(MA), using ORA and FCS, and IMPaLA using ORA. Pathways hsa00250, hsa00270 and hsa00480 are repeatedly reported by
all the methodologies. Pathways hsa05230 and hsa05231 are reported by some of our methods, while alternative approaches
find some close (*) and exact (+) matches. In some cases, instead of reporting a whole pathway, only specific modules within
it are reported as relevant; this is the case of M00133 and M00073. Furthermore, module M00073 does not contain any
compounds, being out of the scope of MetaboAnalyst and IMPaLA, but is reported by one of our methods due to the
presence of other indirect relationships through enzymes in the graph.

The subgraph resulting from applying HD sim (Fig 6) inherits the scale-free 299

structure from the whole graph and enrols the three recurrently reported pathways in 300

the same connected component: hsa00250, hsa00270 and hsa00480. The biological 301

perturbation stemming from the MS-derived compounds can be tracked in terms of 302

reactions, enzymes and modules, up to the relevant pathways. 303

On the other hand, results on the recovery of synthetic signals can be found in Fig 7. 304

In (a) absence of signal, HD ranks pathways with a mean rank close to 0.5, and only a 305
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Fig 6. Subgraph reported through HD norm, the names of reactions and enzymes have
been omitted for clarity. Compounds are green, reactions are blue, enzymes are orange,
modules are purple and pathways are red. The compounds in the input are highlighted
as green squares to ease the tracing of the biological perturbation up to the pathways.
The presence of reactions and enzymes that link pathways in this subgraph might
suggest relevant entities by which affected pathways crosstalk. All the reported
pathways and modules lie in a large CC, as well as a newly proposed metabolite
(L-Glutamate).

few are biased to the top or the bottom of the list. Mean ranks in Fisher’s exact test 306

and PR are also centered around 0.5, but have more dispersion. In (b) the presence of a 307

target pathway, three sampling schemes have been explored. In (1) the signal is actually 308

noise and the target pathway is a decoy. The rank of the target pathway for HD and 309

PR is uniformly spread in [0, 1], whereas Fisher’s exact test shows some asymmetry in 310

the rank distribution. In (2), the sampling probability depends on the presence or 311

absence of the metabolite in the pathway. Fisher’s exact test outperforms HD and PR 312

as the median rank of the target pathway is closer to 0, as expected by its optimality. 313

However, in (3), the sampling probability is network-based and HD outperforms PR, 314

which in turn outperforms Fisher’s exact test. Differences between sim (Monte Carlo 315

trials) and norm (parametric approach) are subtle. 316
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Fig 7. Synthetic signals evaluation using the pathway rank as a metric to assess
orderings. Lowest ranks correspond to best ranked pathways. The proposed
methodology is compared to ORA, represented by Fisher’s exact test. (a) 288 noisy
signals have been generated, and every pathway has been ranked in each of the 288 runs.
Data points for a given methodology are the mean rank of each pathway, giving 288
data points per box. (b) 288 signals with a target pathway have been generated, in
three scenarios: pure noise, proportion-based sampling and network-based sampling.
Each box contains the rank of the target pathway, leading to 288 data points per box.

NMR analysis 317

NMR carbon tracking revealed 13 isotopically enriched metabolites from 13C-glucose, 318

showing differential fractional enrichment between case-control, of which 5 had already 319

been found through MS; some of these metabolites can be seen in Fig 8 in the context 320

of the Glutathione metabolism. Our solutions are assessed in terms of the resistance 321

distance from the reported reactions to the remaining 8 metabolites. The smaller the 322

overall distance of a solution, the more related its nodes are to the 8 metabolites proven 323

affected by NMR. The resistance distances have been computed on the 324

reaction-compound graph, which is the largest CC of the subgraph that contains all the 325

reactions and compounds in the KEGG graph. 326

The reactions suggested in our subgraphs show lower resistance distances to the 8 327

NMR-derived metabolites than the totality of reactions in the reaction-compound graph 328

(Table 4). Furthermore, they are also lower than the resistance distances from the 329

neighbouring reactions of the MS-derived metabolites to the 8 NMR metabolites 330

(FDR < 0.01). 331

Discussion 332

Our approach for enriching summary metabolomics data, Fig 1, is based on diffusion 333

processes over a graph drawn from several KEGG categories (Fig 2). KEGG is the 334

database of choice due to its level of curation and structure, which eases the graph 335

representation. Specifically, the definition of KEGG categories naturally allows a 336

hierarchical arrangement of levels. Our graph design is enhanced by the 337

compound-reaction-enzyme-gene networks built by MetScape (S1 Appendix), and the 338

inclusion of modules and pathways in our arrangement allows a comprehensive picture 339

of the affected biology. 340

The graph contains all the KEGG compounds and the subset of affected metabolites 341

forced to diffuse inside it (Fig 2). The closer a node is to the affected compounds, the 342

higher its score becomes. Likewise, the top scoring candidates naturally involve higher 343

flow and become relevant in the flow discharge from the graph. Because our KEGG 344
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Legend
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Compounds

Reported enzyme

Non-reported enzyme

Non-human enzyme

Reported compound

Non-reported compound

MS metabolites

NMR metabolites

Fig 8. KEGG representation of the Glutathione metabolism (hsa00480). KEGG
compounds found affected through MS (orange) and NMR (blue) are pinpointed in the
figure. Additionally, enzymes and compounds reported by HD norm are depicted in red.
Our approach provides a criterion for highlighting a pathway together with the entities
it contains, for example its reported enzymes, to build a sub-pathway representation
richer than the classical methods that rely solely on pathways and compounds.
Reprinted from www.genome.jp under a CC BY license, with permission from
Kanehisha Laboratories, original copyright 2014.

graph is conceived and curated in a bottom-up manner, diffusion is expected to follow 345

that trend too: the perturbation in the lowest level will diffuse to the upper levels to 346

exit the graph. Ideally, a relevant subgraph found through this diffusion (Fig 6) would 347

inherit the stratification of the KEGG graph, thus allowing the extrapolation of 348

knowledge in terms of compounds to the rest of categories. This allows holistic 349

picturing of pathways of interest, such as Glutathione metabolism (Fig 8) and 350

importantly, it relates affected pathways through reactions, enzymes and compounds. 351

The mathematical formulation of the heat diffusion stationary temperatures is 352

equivalent to the scores in HotNet and TieDIE, with ad-hoc boundary conditions (Fig 2). 353

Conversely, our settings for PageRank force upwards diffusion and allow exit from every 354

node through the damping factor. Node selection for HotNet follows a combinatorial 355
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Table 4. Distance to NMR metabolites

Method Graph order C00299 C00122 C00116 C00105 C00020 C00581 C00300 C00025
Reaction-compound graph 4539[8008] 0.56(0.62) 0.56(0.62) 0.57(0.62) 0.54(0.62) 0.47(0.62) 0.93(0.62) 0.82(0.62) 0.47(0.62)
First neighbours 414[447] 0.42(0.12) 0.43(0.12) 0.44(0.12) 0.40(0.12) 0.33(0.12) 0.79(0.12) 0.68(0.12) 0.33(0.12)
HD norm 147[250] 0.39(0.10) 0.39(0.10) 0.40(0.10) 0.37(0.10) 0.30(0.10) 0.76(0.10) 0.65(0.10) 0.30(0.10)
HD sim 148[261] 0.39(0.09) 0.39(0.09) 0.40(0.10) 0.37(0.09) 0.30(0.09) 0.76(0.09) 0.65(0.09) 0.30(0.09)
PR norm 143[250] 0.39(0.10) 0.39(0.10) 0.40(0.10) 0.37(0.10) 0.30(0.10) 0.75(0.10) 0.65(0.10) 0.30(0.10)
PR sim 172[279] 0.40(0.12) 0.41(0.12) 0.42(0.12) 0.38(0.12) 0.31(0.12) 0.77(0.12) 0.66(0.12) 0.31(0.12)

Mean resistance distance between the reactions reported in our solutions and each compound reported using NMR, with their
standard deviations in parentheses. For each subgraph of KEGG graph, the number of reactions and the total number of
nodes (in square brackets) are displayed. The reaction-compound subgraph contains the largest connected component having
all the reactions and compounds in the KEGG graph. The first neighbours subgraph contains the MS-derived metabolites and
all the reactions in which they participate. Resistance distances are computed on the reaction-compound graph. For every
NMR-derived metabolite, there is a significant difference in resistance distances between the reactions proposed in our
solutions and the reactions involving any of the MS-derived metabolite (one-sided Wilcoxon test, FDR < 0.01 for the 32
possible comparisons: 8 NMR metabolites, tests of 4 solutions against the first neighbours reactions). This implies that the
reported reactions are closer to the NMR-derived compounds than the bulk of neighbouring reactions.

model, whereas TieDIE applies a unique threshold for all the scores, which in turn come 356

from two diffusive processes. In our case, selection is achieved through a unique 357

diffusion followed by a null model that normalises the scores. Comparing raw scores 358

between nodes can lead to biases related to the node level and topology (Fig 4ab), 359

pathway nodes clearly being affected by their degree and, in addition, overshadowed by 360

other compounds and reactions with higher mean null temperatures. Without further 361

action, the temperatures of larger pathways are systematically warmer regardless of the 362

input, thus biasing all the results and any biological interpretation. Instead, our concept 363

of a high score for a given node relies on comparing its score to its null distribution, 364

treating each node according to its own topological features (Fig 1). 365

This is consistent with the pathway over-representation analysis, as the latter can be 366

posed as a very simple diffusion problem that needs the null model to translate the 367

observed statistics into p-values that are comparable across pathways (Fig 3). Ranking 368

pathways by the number of hits and ignoring the null model would bias the results 369

towards larger pathways, which is also what happens in our diffusion approach if raw 370

temperatures are used (Fig 5ab). 371

Finally, we extract four subgraphs by considering the top k scores for HD norm, HD 372

sim, PR norm and PR sim. Spurious highlighted nodes are expected to appear as 373

isolated or having very small CCs, similar to random selection of nodes in a sparse 374

graph, whereas strong biological perturbations yield larger CCs. Therefore, the large 375

CCs reported in the four subgraphs (Table 1) are natural goodness-of-solution 376

indicators. 377

Analysing the two statistical approaches, we suggest both deterministic parametric 378

techniques and stochastic non-parametric ones. Computing a z-score is simple and fast, 379

giving insights into how high a score is in terms of standard deviations from the mean 380

value. On the other hand, Monte Carlo trials can show some variability between 381

solutions, so an ensemble approach can address this, while providing confidence 382

measures for each reported node. Conversely, several quantiles can be estimated and 383

stored if the graph is unchanged for further analyses, which is reasonable for a given 384

KEGG database release. 385

Regarding time and memory complexity, the complete analysis of the database 386

requires a one-off computation the inverse of the conductance matrix of the graph, 387

which is feasible in our scenario and already pre-computed for our public package. The 388

cost of the Monte Carlo trials is benchmarked in S5 Appendix. Comparing both random 389

walk approaches, we observe a tendency to report larger CCs through heat diffusion 390
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(Table 1), because it can propose new compounds in the solution that connect otherwise 391

disjoint CCs. This is not the case for PageRank, as forcing the diffusion upwards 392

excludes other compounds from being visited by the random walks. As expected, all the 393

approaches tend to report the metabolites that were specified in the input, although the 394

z-scores can be more restrictive when suggesting new compounds in heat diffusion, 395

possibly due to their high variance. Despite the differences between scoring methods 396

and statistical approximations, solutions show a consistency because of their high 397

overlap (Table 2). Furthermore, reporting subgraphs with a stratification similar to the 398

KEGG graph (S5 Appendix) indicates perturbation traceability and allows inference on 399

various KEGG categories by measuring only compounds. 400

As a pathway enrichment method, our procedure shows results consistent with the 401

state of the art. Artificial signals have been generated to discover biases in particular 402

pathways and assess the goodness of the rankings produced by the methods. In (a) the 403

absence of signal, the mean rank of a pathway is expected to be uniform on [0, 1] and 404

have a mean value of 0.5. If the mean value is closer to 0, the pathway might be 405

systematically favoured in any analysis and could become a recurrent false positive. HD 406

shows small deviations from 0.5 in the mean rank of the 288 pathways in the KEGG 407

graph while PR and Fisher’s exact test show more dispersion. This may be due to the 408

discrete nature of Fisher’s exact test, which is partly inherited by PR as it only allows 409

upwards propagation. In (b) the presence of signal, a target pathway generates the 410

signal and is ranked in the prioritisation of each method. In the first sampling scheme, 411

the target pathway is actually a decoy and is expected to be ranked uniformly on [0, 1]. 412

This is the case for HD and PR, but Fisher’s exact test shows an asymmetrical 413

distribution, probably a consequence of pathways tied at 0 hits. If the sampling strategy 414

is affine to Fisher’s exact test alternative hypothesis, this test has an edge over HD and 415

PR in terms of discovering the true positive. Conversely, if the sampling is 416

network-based, HD and PR perform better, as the binary nature of Fisher’s exact test 417

cannot account for metabolites close to, but not inside of, a target pathway. This 418

sampling generates signals that are harder to recover because of the network topology: 419

crosstalk effects are present and unspecific metabolites divide their contribution over all 420

the pathways to which they belong. This implies that, focusing on the pathway ranking 421

problem, the optimal choice between Fisher’s exact test and HR or PR depends on the 422

network influence in the generative model of the data. 423

An added value of our approach is in providing further details about the reported 424

pathways, together with more specificity due to the presence of KEGG modules. Our 425

results offer sub-pathway resolution and, unlike other sub-pathway focused tools, details 426

at several molecular levels between the metabolites and the pathways. Entities like 427

enzymes or metabolites that appear relevant and shared among pathways can give 428

insights of pathway overlap and crosstalk that is specific to the condition under study. 429

Our pathway hits are consistent with the current techniques, both using list format and 430

abundance data (Table 3). The same tendency is observed when benchmarking with 431

IMPaLA and MetaboAnalyst example data, details in Tables S2 and S3. However, the 432

nature of our scores takes into account pathway overlap, which is not the case for 433

IMPaLA (ORA) and MetaboAnalyst (ORA and MSEA). 434

Our prior studies [42] suggest that the Glutathione metabolism (Fig 8) is of 435

particular interest and it is consistently pinpointed by the enrichment methods. Its 436

study is illustrative of the workings of our methodology: nodes surrounding the input 437

metabolites support warmer temperatures and hence the proposed enzymes within the 438

pathway are close to the MS-derived metabolites. The suggestion of these enzymes gives 439

a richer view within the pathway and can help generate new biological hypotheses. This 440

context also depicts L-glutamate, an extra metabolite suggested by the method, which 441

is surrounded by MS-derived metabolites and also found through NMR. 442
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The lack of a gold standard procedure and a reference benchmark dataset with 443

known biology for pathway enrichment [14,21] encouraged the analysis of metabolic 444

changes using isotopic labelling and NMR. The novelty of our tool includes the 445

generation of a comprehensive subgraph that contains more than pathways and 446

compounds – consequently we also partially validate the reactions that appear in the 447

subgraph. The definition of performance is not straightforward, given the lack of means 448

to prove that a node (compound, reaction) is not affected, so the usual quality measures 449

(false positives, true negatives) are not applicable. Results show that our reported 450

reactions have lower resistance distances to the 8 metabolites found by NMR than all 451

the reactions involving any of the MS-derived metabolites (Table 4). The choice of 452

resistance distance as a validation metric is motivated by the presence of hubs in the 453

metabolic network that affect the usual shortest paths metrics, meaning that 454

connections through very specific metabolic reactions are masked by very general 455

reactions involving hubs like adenosine triphosphate (ATP). As resistance distance takes 456

into account the whole graph structure, and specifically the presence of multiple 457

shortest paths, it is more informative than shortest paths distance. 458

Conclusions 459

We propose a secondary analysis methodology for summary metabolomics data that 460

combines pathway enrichment and sub-network analysis. Instead of reporting a list of 461

pathways, we build meaningful sub-pathway representations of the biology at several 462

molecular levels, derived through a null diffusive process on a curated graph object built 463

from the KEGG database. This approach accounts for pathway over-representation, 464

topology and crosstalk. Nodes reported as relevant are drawn in a comprehensive 465

heterogeneous network that contains not only pathways and compounds, but also 466

enzymes, reactions and KEGG modules. This richer biological context adds value to the 467

top pathway hits by suggesting possible paths through which affected compounds 468

translate into dysregulated pathways. 469

The proposed methodology has been tested and assessed in a case-control study, 470

where the suggested pathways are consistent with alternative pathway enrichment 471

techniques and the reported reactions have been partially validated through NMR-based 472

tracking of glucose carbon. Our analysis suggests that the Glutathione metabolism is 473

one of the most affected pathways. Glutathione is critical for the suppression of reactive 474

oxygen species and this result is consistent with our preliminary observations that these 475

cells exhibit higher levels of mitochondrial reactive oxygen species. Tests on simulated 476

data suggest that our methodology can benefit from pathway signals whose generative 477

model is network-based. These results support the potential of our novel methods for 478

aiding in the interpretation of complex metabolomics datasets. 479
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S3 Table. MetaboAnalyst example data. Reported pathways for the
MetaboAnalyst example data using top 250 z-scores in heat diffusion, IMPaLA and
MetaboAnalyst.
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S2 Appendix. Heat diffusion process. Formulation of the heat diffusion scoring
method.
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pathway correlation matrix.
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