194 research outputs found

    The role of deformed wing virus in the initial collapse of varroa infested honey bee colonies in the UK.

    Get PDF
    The mite Varroa destructor has been associated with the collapse of millions of Apis mellifera honey bee colonies world-wide. During the past decade, a large body of research has revealed various interactions between varroa, the honey bee and various viral pathogens. One pathogen in particular, deformed wing virus (DWV), has emerged as the key pathogen involved in colony collapse. As varroa has permanently changed the viral landscape in which honey bees exist, we present a large body of data on the effects of DWV during the initial phase of varroa infestation in the UK during 1998. This provides baseline data for further comparative studies. We carried out DWV transmission studies, and observed the effects of DWV on bee longevity. As the ELISA technique used in these studies had a detection limit of ~107 viral particles per bee, only high viral (overt) titres were detected. During the initial phase of varroa establishment, DWV was detected in 0.6 % of non-infested sealed brood, but in 89 % of sealed brood invaded by varroa. Once DWV was introduced into the bee’s haemolymph via mite feeding on either pupae or adults, an overt virus infection was rapidly produced in 3-4 days. In sealed brood the presence of varroa was fatal for 21 % of the brood, caused wing deformity in some emerging adults and significantly reduced longevity as an adult. However, adult bees that became infected after they had emerged, did not develop wing deformity nor show any reduced longevity, but acted as reservoirs of DWV infection

    A comparison of methods for purification and concentration of norovirus GII-4 capsid virus-like particles

    Get PDF
    Noroviruses (NoVs) are one of the leading causes of acute gastroenteritis worldwide. NoV GII-4 VP1 protein was expressed in a recombinant baculovirus system using Sf9 insect cells. Several methods for purification and concentration of virus-like particles (VLPs) were evaluated. Electron microscopy (EM) and histo-blood group antigen (HBGA) binding assays showed that repeated sucrose gradient purification followed by ultrafiltration resulted in intact VLPs with excellent binding to H type 3 antigens. VLPs were stable for at least 12 months at 4°C, and up to 7 days at ambient temperature. These findings indicate that this method yielded stable and high-quality VLPs

    Predictive Markers of Honey Bee Colony Collapse

    Get PDF
    Across the Northern hemisphere, managed honey bee colonies, Apis mellifera, are currently affected by abrupt depopulation during winter and many factors are suspected to be involved, either alone or in combination. Parasites and pathogens are considered as principal actors, in particular the ectoparasitic mite Varroa destructor, associated viruses and the microsporidian Nosema ceranae. Here we used long term monitoring of colonies and screening for eleven disease agents and genes involved in bee immunity and physiology to identify predictive markers of honeybee colony losses during winter. The data show that DWV, Nosema ceranae, Varroa destructor and Vitellogenin can be predictive markers for winter colony losses, but their predictive power strongly depends on the season. In particular, the data support that V. destructor is a key player for losses, arguably in line with its specific impact on the health of individual bees and colonies

    Preventing weight gain: the baseline weight related behaviors and delivery of a randomized controlled intervention in community based women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Women aged 25–45 years represent a high risk group for weight gain and those with children are at increased risk because of weight gain associated with pregnancy and subsequent lifestyle change. Average self-reported weight gain is approximately 0.60 kg per year, and weight gain is associated with increased risk of chronic disease. There are barriers to reaching, engaging and delivering lifestyle interventions to prevent weight gain in this population.</p> <p>Methods</p> <p>This study investigated the baseline weight related behaviors and feasibility of recruiting and delivering a low intensity self-management lifestyle intervention to community based women with children in order to prevent weight gain, compared to standard education. The recruitment and delivery of the cluster-randomized controlled intervention was in conjunction with 12 primary (elementary) schools. Baseline data collection included demographic, anthropometric, behavioral and biological measures.</p> <p>Results</p> <p>Two hundred and fifty community based women were randomized as clusters to intervention (n = 127) or control (n = 123). Mean age was 40.4 years (SD 4.7) and mean BMI 27.8 kg/m<sup>2 </sup>(SD 5.6). All components of this intervention were successfully delivered and retention rates were excellent, 97% at 4 months.</p> <p>Nearly all women (90%) reported being dissatisfied with their weight and 72% attempted to self-manage their weight. Women were more confident of changing their diet (mean score 3.2) than physical activity (mean score 2.7). This population perceived they were engaging in prevention behaviors, with 71% reporting actively trying to prevent weight gain, yet they consumed a mean of 68 g fat/day (SD30 g) and 27 g saturated fat/day (SD12 g) representing 32% and 13% of energy respectively. The women had a high rate of dyslipidemia (33%) and engaged in an average of 9187 steps/day (SD 3671).</p> <p>Conclusion</p> <p>Delivery of this low intensity intervention to a broad cross-section of community based women with children is feasible. Women with children are engaging in lifestyle behaviours which do not confer adequate health benefits. They appear to be motivated to attend prevention programs by their interest in weight management. Interventions are required to strengthen and sustain current attempts at achieving healthy lifestyle behaviours in women to prevent weight gain.</p> <p>Trial Registration Number</p> <p>ACTRN 12608000110381</p

    Whole genome analysis reveals aneuploidies in early pregnancy loss in the horse

    Get PDF
    The first 8 weeks of pregnancy is a critical time, with the majority of pregnancy losses occurring during this period. Abnormal chromosome number (aneuploidy) is a common finding in human miscarriage, yet is rarely reported in domestic animals. Equine early pregnancy loss (EPL) has no diagnosis in over 80% of cases. The aim of this study was to characterise aneuploidies associated with equine EPL. Genomic DNA from clinical cases of spontaneous miscarriage (EPLs; 14–65 days of gestation) and healthy control placentae (various gestational ages) were assessed using a high density genotyping array. Aneuploidy was detected in 12/55 EPLs (21.8%), and 0/15 healthy control placentae. Whole genome sequencing (30X) and digital droplet PCR (ddPCR) validated results. The majority of these aneuploidies have never been reported in live born equines, supporting their embryonic/fetal lethality. Aneuploidies were detected in both placental and fetal compartments. Rodents are currently used to study how maternal ageing impacts aneuploidy risk, however the differences in reproductive biology is a limitation of this model. We present the first evidence of aneuploidy in naturally occurring equine EPLs at a similar rate to human miscarriage. We therefore suggest the horse as an alternative to rodent models to study mechanisms resulting in aneuploid pregnancies

    Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers

    Get PDF
    International audienceBACKGROUND:Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease.RESULTS:Here, we demonstrate that activation of the immune system in honey bees (using bacterial lipopolysaccharides as a non-replicative pathogen) alters the social responses of healthy nestmates toward the treated individuals. Furthermore, treated individuals expressed significant differences in overall cuticular hydrocarbon profiles compared with controls. Finally, coating healthy individuals with extracts containing cuticular hydrocarbons of immunostimulated individuals significantly increased the agonistic responses of nestmates.CONCLUSION:Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony

    Proteins on the catwalk: modelling the structural domains of the CCN family of proteins

    Get PDF
    The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach

    A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome

    Get PDF
    Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk factor, although the possession of extra copies of other chromosome 21 genes may also play a role. Further study of the mechanisms underlying the development of Alzheimer disease in Down syndrome could provide insights into the mechanisms that cause dementia in the general population

    Cold case : the disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970’s Egypt

    Get PDF
    In 1977, a sample of diseased adult honeybees (Apis mellifera) from Egypt was found to contain large amounts of a previously unknown virus, Egypt bee virus, which was subsequently shown to be serologically related to deformed wing virus (DWV). By sequencing the original isolate, we demonstrate that Egypt bee virus is in fact a fourth unique, major variant of DWV (DWV-D): more closely related to DWV-C than to either DWV-A or DWV-B. DWV-A and DWV-B are the most common DWV variants worldwide due to their close relationship and transmission by Varroa destructor. However, we could not find any trace of DWV-D in several hundred RNA sequencing libraries from a worldwide selection of honeybee, varroa and bumblebee samples. This means that DWV-D has either become extinct, been replaced by other DWV variants better adapted to varroa-mediated transmission, or persists only in a narrow geographic or host range, isolated from common bee and beekeeping trade routes
    corecore