130 research outputs found

    Are viable democratic government and effective foreign policy irreconcilable aims?.

    Get PDF
    http://www.archive.org/details/areviabledemocra00bus

    Quantum optical signal processing in diamond

    Full text link
    Controlling the properties of single photons is essential for a wide array of emerging optical quantum technologies spanning quantum sensing, quantum computing, and quantum communications. Essential components for these technologies include single photon sources, quantum memories, waveguides, and detectors. The ideal spectral operating parameters (wavelength and bandwidth) of these components are rarely similar; thus, frequency conversion and spectral control are key enabling steps for component hybridization. Here we perform signal processing of single photons by coherently manipulating their spectra via a modified quantum memory. We store 723.5 nm photons, with 4.1 nm bandwidth, in a room-temperature diamond crystal; upon retrieval we demonstrate centre frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 to 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, to be an integrated platform for photon storage and spectral conversion.Comment: 6 pages, 4 figure

    Storage of polarization-entangled THz-bandwidth photons in a diamond quantum memory

    Full text link
    Bulk diamond phonons have been shown to be a versatile platform for the generation, storage, and manipulation of high-bandwidth quantum states of light. Here we demonstrate a diamond quantum memory that stores, and releases on demand, an arbitrarily polarized ∌\sim250 fs duration photonic qubit. The single-mode nature of the memory is overcome by mapping the two degrees of polarization of the qubit, via Raman transitions, onto two spatially distinct optical phonon modes located in the same diamond crystal. The two modes are coherently recombined upon retrieval and quantum process tomography confirms that the memory faithfully reproduces the input state with average fidelity 0.784±0.0040.784\pm0.004 with a total memory efficiency of (0.76±0.03)%(0.76\pm0.03)\%. In an additional demonstration, one photon of a polarization-entangled pair is stored in the memory. We report that entanglement persists in the retrieved state for up to 1.3 ps of storage time. These results demonstrate that the diamond phonon platform can be used in concert with polarization qubits, a key requirement for polarization-encoded photonic processing

    Storage and retrieval of ultrafast single photons using a room-temperature diamond quantum memory

    Full text link
    We report the storage and retrieval of single photons, via a quantum memory, in the optical phonons of room-temperature bulk diamond. The THz-bandwidth heralded photons are generated by spontaneous parametric downconversion and mapped to phonons via a Raman transition, stored for a variable delay, and released on demand. The second-order correlation of the memory output is g(2)(0)=0.65±0.07g^{(2)}(0) = 0.65 \pm 0.07, demonstrating preservation of non-classical photon statistics throughout storage and retrieval. The memory is low-noise, high-speed and broadly tunable; it therefore promises to be a versatile light-matter interface for local quantum processing applications.Comment: 6 pages, 4 figure

    Deriving a Generic Energy Consumption Model for Network Enabled Devices

    Get PDF
    Abstract-Energy saving has become a global issue when people use network enabled equipment in the office or at home. However few methods exist to measure and monitor energy use per user or per application, or to control equipment power states. We propose a generic energy consumption model that is based on the power state of network attached equipment, and that supports power management capabilities. This includes measures for each power state (on/off/sleep) and for per bit energy consumption, per interface, per application and at the network QoS (Quality of Services) level. Given the power state of a network device, a network manger could remotely inspect the energy consumption and make changes to the power management setting; for this to happen we introduce a new MIB (Management Information Base) schema to capture the attributes of relevance. Using an agent based modeling framework, we introduce the overall autonomic architecture that makes it possible to minimize energy consumption of network enabled equipment

    Metabolism-dependent bioaccumulation of uranium by Rhodosporidium toruloides isolated from the flooding water of a former uranium mine

    Get PDF
    Remediation of former uranium mining sites represents one of the biggest challenges worldwide that have to be solved in this century. During the last years, the search of alternative strategies involving environmentally sustainable treatments has started. Bioremediation, the use of microorganisms to clean up polluted sites in the environment, is considered one the best alternative. By means of culture-dependent methods, we isolated an indigenous yeast strain, KS5 (Rhodosporidium toruloides), directly from the flooding water of a former uranium mining site and investigated its interactions with uranium. Our results highlight distinct adaptive mechanisms towards high uranium concentrations on the one hand, and complex interaction mechanisms on the other. The cells of the strain KS5 exhibit high a uranium tolerance, being able to grow at 6 mM, and also a high ability to accumulate this radionuclide (350 mg uranium/g dry biomass, 48 h). The removal of uranium by KS5 displays a temperature- and cell viability-dependent process, indicating that metabolic activity could be involved. By STEM (scanning transmission electron microscopy) investigations, we observed that uranium was removed by two mechanisms, active bioaccumulation and inactive biosorption. This study highlights the potential of KS5 as a representative of indigenous species within the flooding water of a former uranium mine, which may play a key role in bioremediation of uranium contaminated sites.This work was supported by the Bundesministerium fĂŒr Bildung und Forschung grand nÂș 02NUK030F (TransAqua). Further support took place by the ERDF-co-financed Grants CGL2012-36505 and 315 CGL2014-59616R, Ministerio de Ciencia e InnovaciĂłn, Spain

    The multi-peak adaptive landscape of crocodylomorph body size evolution

    Get PDF
    Background: Little is known about the long-term patterns of body size evolution in Crocodylomorpha, the > 200-million-year-old group that includes living crocodylians and their extinct relatives. Extant crocodylians are mostly large-bodied (3–7 m) predators. However, extinct crocodylomorphs exhibit a wider range of phenotypes, and many of the earliest taxa were much smaller ( Results: Crocodylomorphs reached an early peak in body size disparity during the Late Jurassic, and underwent an essentially continual decline since then. A multi-peak Ornstein-Uhlenbeck model outperforms all other evolutionary models fitted to our data (including both uniform and non-uniform), indicating that the macroevolutionary dynamics of crocodylomorph body size are better described within the concept of an adaptive landscape, with most body size variation emerging after shifts to new macroevolutionary regimes (analogous to adaptive zones). We did not find support for a consistent evolutionary trend towards larger sizes among lineages (i.e., Cope’s rule), or strong correlations of body size with climate. Instead, the intermediate to large body sizes of some crocodylomorphs are better explained by group-specific adaptations. In particular, the evolution of a more aquatic lifestyle (especially marine) correlates with increases in average body size, though not without exceptions. Conclusions: Shifts between macroevolutionary regimes provide a better explanation of crocodylomorph body size evolution on large phylogenetic and temporal scales, suggesting a central role for lineage-specific adaptations rather than climatic forcing. Shifts leading to larger body sizes occurred in most aquatic and semi-aquatic groups. This, combined with extinctions of groups occupying smaller body size regimes (particularly during the Late Cretaceous and Cenozoic), gave rise to the upward-shifted body size distribution of extant crocodylomorphs compared to their smaller-bodied terrestrial ancestors.</p

    The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)

    Get PDF
    • 

    corecore