1,183 research outputs found

    Relevance of pseudospin symmetry in proton-nucleus scattering

    Full text link
    The manifestation of pseudospin-symmetry in proton-nucleus scattering is discussed. Constraints on the pseudospin-symmetry violating scattering amplitude are given which require as input cross section and polarization data, but no measurements of the spin rotation function. Application of these constraints to p-58Ni and p-208Pb scattering data in the laboratory energy range of 200 MeV to 800 MeV, reveals a significant violation of the symmetry at lower energies and a weak one at higher energies. Using a schematic model within the Dirac phenomenology, the role of the Coulomb potential in proton-nucleus scattering with regard to pseudospin symmetry is studied. Our results indicate that the existence of pseudospin-symmetry in proton-nucleus scattering is questionable in the whole energy region considered and that the violation of this symmetry stems from the long range nature of the Coulomb interaction.Comment: 22 pages including 9 figures, correction of 1 reference, revision of abstract and major modification of chapter 4, Fig. 6, and Fig. 7; addition of Fig. 8 and Fig.

    SM(2,4k) fermionic characters and restricted jagged partitions

    Full text link
    A derivation of the basis of states for the SM(2,4k)SM(2,4k) superconformal minimal models is presented. It relies on a general hypothesis concerning the role of the null field of dimension 2k1/22k-1/2. The basis is expressed solely in terms of GrG_r modes and it takes the form of simple exclusion conditions (being thus a quasi-particle-type basis). Its elements are in correspondence with (2k1)(2k-1)-restricted jagged partitions. The generating functions of the latter provide novel fermionic forms for the characters of the irreducible representations in both Ramond and Neveu-Schwarz sectors.Comment: 12 page

    How to find an attractive solution to the liar paradox

    Get PDF
    The general thesis of this paper is that metasemantic theories can play a central role in determining the correct solution to the liar paradox. I argue for the thesis by providing a specific example. I show how Lewis’s reference-magnetic metasemantic theory may decide between two of the most influential solutions to the liar paradox: Kripke’s minimal fixed point theory of truth and Gupta and Belnap’s revision theory of truth. In particular, I suggest that Lewis’s metasemantic theory favours Kripke’s solution to the paradox over Gupta and Belnap’s. I then sketch how other standard criteria for assessing solutions to the liar paradox, such as whether a solution faces a so-called revenge paradox, fit into this picture. While the discussion of the specific example is itself important, the underlying lesson is that we have an unused strategy for resolving one of the hardest problems in philosophy

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    Progress in manufacturing the first 8.4 m off-axis segment for the Giant Magellan Telescope

    Get PDF
    ABSTRACT The first of the 8.4 m off-axis segments for the primary mirror of the Giant Magellan Telescope is being manufactured at the Steward Observatory Mirror Lab. In addition to the manufacture of the segment, this project includes the development of a complete facility to make and measure all seven segments. We have installed a new 28 m test tower and designed a set of measurements to guide the fabrication and qualify the finished segments. The first test, a lasertracker measurement of the ground surface, is operational. The principal optical test is a full-aperture interferometric test with a null corrector that includes a 3.75 m spherical mirror, a smaller sphere, and a computer-generated hologram. We have also designed a scanning pentaprism test to validate the measurement of low-order aberrations. The first segment has been cast and generated, and is in the process of loose-abrasive grinding

    Polynomial Identities, Indices, and Duality for the N=1 Superconformal Model SM(2,4\nu)

    Get PDF
    We prove polynomial identities for the N=1 superconformal model SM(2,4\nu) which generalize and extend the known Fermi/Bose character identities. Our proof uses the q-trinomial coefficients of Andrews and Baxter on the bosonic side and a recently introduced very general method of producing recursion relations for q-series on the fermionic side. We use these polynomials to demonstrate a dual relation under q \rightarrow q^{-1} between SM(2,4\nu) and M(2\nu-1,4\nu). We also introduce a generalization of the Witten index which is expressible in terms of the Rogers false theta functions.Comment: 41 pages, harvmac, no figures; new identities, proofs and comments added; misprints eliminate

    Local niche differences predict genotype associations in sister taxa of desert tortoise

    Get PDF
    Aims: To investigate spatial congruence between ecological niches and genotype in two allopatric species of desert tortoise that are species of conservation concern. Location: Mojave and Sonoran Desert ecoregions; California, Nevada, Arizona, Utah, USA. Methods: We compare ecological niches of Gopherus agassizii and Gopherus morafkai using species distribution modelling (SDM) and then calibrate a pooled-taxa distribution model to explore local differences in species-environment relationships based on the spatial residuals of the pooled-taxa model. We use multiscale geographically weighted regression (MGWR) applied to those residuals to estimate local species-environment relationships that can vary across the landscape. We identify multivariate clusters in these local species-environment relationships and compare them against models of (a) a geographically based taxonomic designation for two sister species and (b) an environmental ecoregion designation, with respect to their ability to predict a genotype association index for these two species. Results: We find non-identical niches for these species, with differences that span physiographic and vegetation niche dimensions. We find evidence for two distinct clusters of local species-environment relationships that when mapped, predict an index of genotype association for the two sister taxa better than did either the geographically based taxonomic designation or an environmental ecoregion designation. Main conclusions: Exploring local species-environment relationships by coupling SDM and MGWR can benefit studies of biogeography and conservation. We find that niche separation in habitat selection conforms to genotypic differences between sister taxa of tortoise in a recent secondary contact zone. This result may inform decision making by agencies with regulatory or land management authority for the two sister taxa addressed here.Open access articleThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore