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Abstract

We prove polynomial identities for the N = 1 superconformal model SM(2, 4ν) which

generalize and extend the known Fermi/Bose character identities. Our proof uses the q-

trinomial coefficients of Andrews and Baxter on the bosonic side and a recently introduced

very general method of producing recursion relations for q-series on the fermionic side. We

use these polynomials to demonstrate a dual relation under q → q−1 between SM(2, 4ν)

and M(2ν − 1, 4ν). We also introduce a generalization of the Witten index which is

expressible in terms of the Rogers false theta functions.

1. Introduction

All chiral partition functions of conformal field theory have two distinct representa-

tions; 1) a bosonic form which may be expressed in terms of theta functions from which

modular transformation properties are readily apparent [1] and 2) a fermionic form in

terms of q-series in which the quasiparticle spectrum of the theory is clearly seen. The

bosonic form is most useful in computing the conformal dimensions. The fermionic form

is best adapted to study massive perturbations. The equality of the two forms can be

thought of as generalized Rogers-Ramanujan identities.

The study of the bosonic representations has been well developed for over a decade.

However, with the exceptions of the pioneering work on characters of A
(1)
1 [2]–[3] and the

ZN parafermionic theories [4]–[5] the study of the fermionic representations started only

several years ago and in the last few years there have been many conjectures and proofs

of fermionic representations of the various characters [6]–[37].

In this paper we consider the N = 1 superconformal model SM(2, 4ν). The bosonic

form of this model’s characters is a special case of the general formula [38]

χ̂(p,p′)
r,s (q) = χ̂

(p,p′)
p−r,p′−s(q) =

(−qǫr−s)∞
(q)∞

∞∑

j=−∞

(
q

j(jpp′+rp′−sp)
2 − q

(jp+r)(jp′+s)
2

)
(1.1)

where

(A)k =

{∏k−1
j=0 (1 −Aqj), k = 1, 2, · · ·

1, k=0
(1.2)

and

ǫa =

{
1
2 if a is even (Neveu-Schwarz (NS) sector)
1 if a is odd (Ramond (R) sector)

(1.3)

Here r = 1, 2, · · · , p− 1 and s = 1, 2, · · · , p′ − 1 and p and (p′−p)
2 are coprime.
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Setting p = 2, p′ = 4ν in (1.1) we have for n = 0,±1

χ̂
(2,4ν)
1,2ν−2s′+|n|−1(q) ≡ B

(ν,n)
s′ (q) =

(−q 1+|n|
2 )∞

(q)∞

∞∑

j=−∞

(−1)jqνj2+j(s′+
1−|n|

2 ) (1.4)

where here and throughout the rest of the paper

s′ = 0, 1, 2, ..., ν − 1 (1.5)

and n = 0(±1) corresponds to the NS(R) sector.

The Fermionic representations of SM(2, 4ν) characters are given in terms of the func-

tion F
(ν,n)
s′ (q) defined for n = 0,±1 as follows

F
(ν,n)
s′ (q) =

∑

m1,n2,···,nν≥0

qQf+Lfn,s′

(q)n2
(q)n3

· · · (q)nν

[
N2

m1

]

q

, (1.6)

where the q-binomial coefficient is defined in a slightly unconventional way as

[
l

m

]

q

=






(q)l

(q)m(q)l−m
if 0 ≤ m ≤ l

1 if m = 0, l ≤ −1
0 otherwise,

(1.7)

the quadratic form Qf and linear form Lfn,s′ are

Qf =
m2

1

2
−m1N2 +

ν∑

j=2

N2
j (1.8)

Lfn,s′ = n
m1

2
+

ν∑

l=ν−s′+1

Nl, (1.9)

with

Nk =
ν∑

j=k

nj . (1.10)

Once again n = 0 corresponds to the NS sector and n = +1(−1) corresponds to the

first (second) representation for the Ramond sector which we will call R+(R−). We note

in passing that the reason for existence of these two representations can be traced back to

the fact that zero-modes of fermionic fields act nontrivially on the highest weight vectors.

The relation between the bosonic and fermionic forms depends on the characters

studied. We consider three separate cases
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1) For the Neveu-Schwarz sector we have:

B
(ν,0)
s′ (q) = F

(ν,0)
s′ (q); (1.11)

2) For R+

B
(ν,1)
s′ (q) =

{
1
2 (F

(ν,1)
s′ (q) + F

(ν,1)
s′−1 (q)) for s′ 6= 0

F
(ν,1)
0 (q) for s′ = 0;

(1.12)

3) For R−

F
(ν,−1)
s′ (q) =

{
B

(ν,−1)
ν−1 (q) for s′ = ν − 1

B
(ν,−1)
s′ (q) +B

(ν,−1)
s′+1 (q) for s′ 6= ν − 1

(1.13)

or, equivalently

B
(ν,−1)
s′ (q) =

ν−1∑

l=s′

(−1)l+s′

F
(ν,−1)
l (q). (1.14)

In the Neveu-Schwarz sector the identities (1.11) are the generalizations to arbitrary

ν by Andrews [39] (for s′ = 0) and Bressoud [40] of the ν = 2 results due to Slater (eqns.

(34), (36) of [41]) also known as Göllnitz-Gordon identities [42] and [43]. For the Ramond

cases R− with s′ = ν − 1 and R+ with s′ = 0 the identities (1.12) and (1.13) have been

conjectured by Melzer [37]. For all other values of s′ the results of (1.12) and (1.13) are

new. In general, the Ramond sector Fermi forms should also be compared with the result

of Burge [44] (stated at the bottom of page 204 with the misprint (q2, q2)nk−1
corrected

to (q2, q2)nk−2
) where a free Fermi term is factored out and the number of variables in the

sum is reduced to ν−1. A direct proof of the equivalence of (1.12) with [44] does not seem

to be known.

The first purpose of this paper is to generalize both the bosonic and the fermionic ex-

pressions from infinite series to polynomials. Indeed, we will see that there are not one, but

many distinct polynomials which generalize (1.1) and (1.6). We will then prove Fermi/Bose

identities for these polynomials by obtaining recursion relations between several different

polynomials which are related to a given character. These polynomial identities will re-

duce to (1.11)–(1.13) when the degree of polynomials goes to infinity. Our tools in this

proof will be the use of the q-trinomial coefficients of Andrews and Baxter [45]–[47] on the

bosonic side and the methods of ref. [22] on the fermionic side.

By the very name the N = 1 superconformal models have an interpretation in terms

of a fermion and a boson, and one aspect of this interpretation is seen in the factorization
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of the bosonic form (1.1) into a free fermionic factor (−qǫr−s)∞ and another factor which

looks as if it is obtained from a free boson by projecting out null states. Correspondingly,

there should be an interpretation of the Fermi form (1.6) which separates the quasiparticles

into one which represents the fermion and the rest which represent what in the bosonic

form was called the projected boson. One such interpretation is instantly suggested by

the form (1.6) itself where m1 and ni appear in quite different ways. We will thus adopt

the tentative interpretation that m1 is related to the fermion number operator F or per-

haps more accurately that (−1)m1 is related to the chirality operator (−1)F . With this

identification we can consider the object

F̃
(ν,n)
s′ (q) =

∑

m1,n2,···,nν≥0

(−1)m1qQf+Lfn,s′

(q)n2
(q)n3

· · · (q)nν

[
N2

m1

]

q

(1.15)

and ask what relation it has with

Tr(−1)F exp(−H). (1.16)

In the NS sector this relation is straightforward. Replacing
√
q by −√

q in (1.11) we

immediately note

F̃
(ν,0)
s′ (q) = F

(ν,0)
s′ (e2πiq) = B

(ν,0)
s′ (e2πiq) (1.17)

Clearly, F̃
(ν,0)
s′ (q) is the T -modular transform of F

(ν,0)
s′ (q) and therefore must be equal

to (1.16) according to [49]. In the Ramond sector we again find that there are two distinct

cases. For R+ we define in analogy with (1.12)

B̃
(ν,1)
s′ (q) =

{
1
2
(F̃

(ν,1)
s′ (q) − F̃

(ν,1)
s′−1 (q)) for s′ 6= 0

F̃
(ν,1)
0 (q) for s′ = 0.

(1.18)

Then since we prove in sec. 5 that

F̃
(ν,1)
s′ (q) = 1 (1.19)

we see that

B̃
(ν,1)
s′ (q) =

{
0 for s′ 6= 0
1 for s′ = 0

(1.20)

which is equal to the Witten indices [48] as studied in [49]. We want to emphasize that

formulas (1.18) are not identities, but definitions. However, in sec. 5 we will find polynomial

identities for s′ 6= 0, which provide extra motivation for the definitions above. For the case
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s′ = 0 an appropriate polynomial identity is still lacking. Our motivation in this case is

the analogy with (1.12) and the fact that we have an agreement with the Witten index

calculations of [49].

For the Ramond case of R− we define in analogy with (1.14)

B̃
(ν,−1)
s′ (q) =

ν−1∑

l=s′

F̃
(ν,−1)
l (q). (1.21)

In sec. 5 we find the bosonic companion of F̃
(ν,−1)
s′ (q). Remarkably, it is not a constant,

but rather is

F̃
(ν,−1)
s′ (q) =

{
I
(ν)
ν−1(q) for s′ = ν − 1

I
(ν)
s′ (q) − I

(ν)
s′+1(q) for s′ 6= ν − 1

(1.22)

where

I
(ν)
s′ (q) = 1 +

∞∑

j=1

qνj2

(qs′j − q−s′j) (1.23)

is the false theta function introduced by Rogers [50] and extensively studied by An-

drews [51]. Thus

B̃
(ν,−1)
s′ (q) = I

(ν)
s′ (q). (1.24)

We show in sec. 5 that

lim
q→1

I
(ν)
s′ (q) = 1 − s′

ν
(1.25)

which suggests that it is possible to define for R− a fractional analogue of the Witten

index.

In sec. 2 we will state in detail the polynomial analogs of identities (1.11)–(1.13) and

the sets of recursion relations we will use to prove them. In sec. 3 we will show that the

fermionic polynomials satisfy these recursion relations and in sec. 4 we will do it for the

bosonic polynomials. In sec. 5 we will discuss the Fermi forms F̃
(ν,±1)
s′ (q) and the indices

B̃
(ν,±1)
s′ (q). In sec. 6 we will use the polynomial identities to study the dual relation which

exists between SM(2, 4ν) and M(2ν − 1, 4ν) under the replacement q → q−1. Finally in

sec. 7 we will discuss representation theoretical consequences of two partition identities

due to Burge. We will conclude with some remarks about possible generalizations and

open questions. Technical details concerning q-trinomial coefficients will be treated in the

appendix for continuity of presentation.
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2. Polynomials and Recursion relations.

The starting point for proving Rogers-Ramanujan type identities by the method of

[22] is identifying an (~n, ~m)-system and an associated counting problem. For the present

case the appropriate (~n, ~m)-system is as follows

n1 +m1 =
1

2
(L+m1 −m2) − a1

n2 +m2 =
1

2
(L+m1 +m3) − a2

ni +mi =
1

2
(mi−1 +mi+1) − ai, for 3 ≤ i ≤ ν − 1

nν +mν =
1

2
(mν−1 +mν) − aν

(2.1)

where ni and mi are integers and the components ai of the vector ~a are either integers

or half integers. This system is closely related to the TBA equations for the XXZ-model

((3.9) of [52]) with anisotropy

γ = π
(2ν − 1)

4ν
. (2.2)

In the language of our previous treatment [36] of the M(p, p′) minimal models, sys-

tem (2.1) consists of two Takahashi zones with tadpoles at the end of each zone. The

principal difference between the present case and the one considered in [36] is the ap-

pearance of two inhomogeneous terms L
2

in the first and second equations. The second

inhomogeneous term arises because N = 1 superconformal models are derived from the

spin 1 XXZ chain [53] while N = 0 models, investigated in [36], are derived from the spin

1
2

chain. The presence of the first term in (2.1) indicates that the spin 1 XXZ model

with γ given by (2.2) is in the regime of strong anisotropy. This inhomogeneous term is

not expected to be present for any other N = 1 SM(p, p′) model with 2p′

p′−p ≥ 3.

The (~n, ~m)-system (2.1) describes ν Fermi bands. Each band consists of ni + mi

consecutive integers with only ni distinct integers being occupied by the ni quasiparticles.

The remaining mi integers can be thought of as holes. If one allows particles to move

freely in each band (subject only to fermionic exclusion rules) then one is naturally led to

the following counting problem

F (L) =
∑

ni,mi≥0

ν∏

i=1

[
ni +mi

ni

]
(2.3)
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where the summation variables ni, mi are related by (2.1) with ~a fixed to be zero for the

time being. To calculate F (L) we use three simple consequences of (2.1)

L = n1 +mν +

ν∑

i=2

(2i− 3)ni (2.4)

mi = mν + 2
ν∑

j=i+1

Nj , i ≥ 2 (2.5)

n1 +m2 = N2 (2.6)

along with the generating function technique (sec. 2 of [22]) to obtain

F (L) = B(L) (2.7)

where

B(L) =

∞∑

j=−∞

(−1)j

((
L

2νj

)

2

+

(
L

2νj + 1

)

2

)
(2.8)

and Nj was defined in (1.10).

The trinomial coefficients
(
L
i

)
2

which appear in the above equation are given by

(z + 1 +
1

z
)L =

L∑

i=−L

(
L

i

)

2

zi. (2.9)

In what follows we will consider three different q-analogs of (2.7) associated with

the NS and R± sectors. We remark that these q-deformations amount to prescribing the

linear dispersion law for the quasiparticles described above. We also point out that one

can use (2.1) and (2.4) to find a pictorial representation for quasiparticles in the spirit

of [26]. This representation will be given elsewhere.

Motivated by (2.3) we now introduce the polynomial generalization of the fermionic

form F
(ν,n)
s′ (q) (1.6)-(1.9)

F
(ν,n)
r′,s′ (L, q) =

∑

Dr′,s′

qQf+Lfn,s′

ν∏

i=1

[
ni +mi

ni

]

q

(2.10)

where the “finitization” parameter r′ is

r′ = 0, 1, 2, · · · , ν − 2 (2.11)
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and the variables ni, mi are related by (2.1) with the vector ~a defined by

~a = ~a(r′) + ~a(s′)

a
(k)
i =

{
1
2 (δi,ν − δi,ν−k) for 0 ≤ k ≤ ν − 2
1
2
(δi,ν + δi,1) for k = ν − 1.

(2.12)

The domain of summation, Dr′,s′ is best described in terms of ~n and mν which are

subject to the constraint

L = (n1 + a1) +mν +

ν∑

i=2

(2i− 3)(ni + ai). (2.13)

All other variables are given by

m1 = N2 − n1 (2.14)

mi = mν + 2
ν∑

j=i+1

(j − i)(nj + aj), i = 2, 3, · · · , ν − 1. (2.15)

Keeping in mind that [
neg. int.

0

]

q

= 1, (2.16)

we define Dr′,s′ for s′ ≥ r′ as the union of the sets of solutions to (2.13) satisfying

0 : ni, mν ≥ 0,

1 : nν = 0, mν = −2, n1, · · · , nν−1 ≥ 0,

2 : nν = nν−1 = 0, mν = −4, n1, · · ·nν−2 ≥ 0,

· · ·

r′ : nν = nν−1 = · · · = nν−r′+1 = 0, mν = −2r′, n1, · · · , nν−r′ ≥ 0;

(2.17)

and for s′ < r′ the definition is the same as above with r′ → s′.

Using the asymptotic formula

lim
A→∞

[
A

B

]

q

=
1

(q)B
(2.18)

and the simple consequence of (2.1)

ni +mi = L+m1 + ni − 2

i∑

j=2

(j − 1)(nj + aj) − 2

ν∑

j=i+1

(i− 1)(nj + aj); i ≥ 2 (2.19)
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along with (2.14), we establish relations between F
(ν,n)
r′,s′ (L, q) and the fermionic forms (1.6)

lim
L→∞

F
(ν,n)
r′,s′ (L, q) = F

(ν,n)
s′ (q) (2.20)

which hold for all r′.

To write the bosonic polynomials one needs the q-analogs of the trinomial coefficients
(

L
A

)
2

introduced in (2.9). Following Andrews and Baxter [45] we define

(
L,A− n; q

A

)

2

=
∑

j≥0

tn(L,A; j), n ∈ Z (2.21)

and

Tn(L,A; q
1
2 ) = q

L(L−n)−A(A−n)
2

(
L,A− n; q−1

A

)

2

(2.22)

where

tn(L,A; j) =
qj(j+A−n)(q)L

(q)j(q)j+A(q)L−2j−A
. (2.23)

We note the elementary property

Tn(L,A; q
1
2 ) = Tn(L,−A; q

1
2 ) (2.24)

and remark that

Tn(L,A;−q 1
2 ) =

{
(−1)L+ATn(L,A; q

1
2 ) for n even

Tn(L,A; q
1
2 ) for n odd

(2.25)

Consequently, Tn(L,A; q
1
2 ) is actually a polynomial in q for n odd or for n even and L+A

even, while for n even and L+A odd Tn(L,A, q
1
2 ) contains only odd powers of q

1
2 .

We then have the following definition of bosonic polynomials:

1) For the Neveu-Schwarz sector

B
(ν,0)
r′,s′ (L, q) =

∞∑

j=−∞

(−1)jqνj2+(s′+ 1
2 )j

(
T0(L, 2νj + s′ − r′; q

1
2 )

+ T0(L, 2νj + s′ + 1 + r′; q
1
2 )

)
;

(2.26)

2) For the Ramond sector R+

B
(ν,1)
r′,s′ (L, q) =

1

2

∞∑

j=−∞

(−1)jqνj2+s′j

(
T−1(L, 2νj + s′ − r′; q

1
2 ) + T−1(L, 2νj + s′ + 1 + r′; q

1
2 )

+ T−1(L, 2νj + s′ − r′ − 1; q
1
2 ) + T−1(L, 2νj + s′ + r′; q

1
2 )

)
;

(2.27)
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3) For the Ramond sector R−

B
(ν,−1)
r′,s′ (L, q) =

∞∑

j=−∞

(−1)jqνj2+s′j
r′∑

i=−r′

(−1)r′+iT1(L, 2νj + s′ + i; q
1
2 ) (2.28)

where s′ = 0, 1, 2, · · · , ν − 1 and r′ = 0, 1, 2, · · · , ν − 2.

Using the limiting formula of the appendix

lim
L→∞

Tn(L,A; q
1
2 ) =






(−q
(1−n)

2 )∞+(q
(1−n)

2 )∞
2(q)∞

if L−A is even

(−q
(1−n)

2 )∞−(q
(1−n)

2 )∞
2(q)∞

if L−A is odd.

(2.29)

and noting the special case

lim
L→∞

T1(L,A; q
1
2 ) =

(−q)∞
(q)∞

(2.30)

we find the relation between the polynomials B
(ν,n)
r′,s′ (L, q) and the characters (1.4)

lim
L→∞

B
(ν,0)
r′s′ (L, q) = B

(ν,0)
s′ (q)

lim
L→∞

B
(ν,1)
r′,s′ (L, q) = lim

L→∞
B

(ν,−1)
r′,s′ (L, q) = B

(ν,±1)
s′ (q)

(2.31)

which holds for all r′.

We will prove the following polynomial identities which generalize the character iden-

tities (1.11)–(1.13)

1) For NS

F
(ν,0)
r′,s′ (L, q) = B

(ν,0)
r′,s′ (L, q); (2.32)

2) For R+

B
(ν,1)
r′,s′ (L, q) =

{
1
2
(F

(ν,1)
r′,s′ (L, q) + F

(ν,1)
r′,s′−1(L, q)) for s′ 6= 0

F
(ν,1)
r′,0 (L, q) for s′ = 0;

(2.33)

3) For R−

F
(ν,−1)
r′,s′ (L, q) =

{
B

(ν,−1)
r′,ν−1(L, q) for s′ = ν − 1

B
(ν,−1)
r′,s′ (L, q) +B

(ν,−1)
r′,s′+1(L, q) for s′ 6= ν − 1.

(2.34)
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by showing that both F
(ν,n)
r′,s′ (L, q) and B

(ν,n)
r′,s′ (L, q) satisfy the following set of recursion

relations for ν ≥ 3 in the variables L and r′

h0(L) = h1(L− 1) + (qL− 1−n
2 + 1)h0(L− 1) + (qL−1 − 1)h0(L− 2),

hr(L) = hr−1(L− 1) + hr+1(L− 1) + qL− 1−n
2 hr(L− 1) + (qL−1 − 1)hr(L− 2)

for 1 ≤ r ≤ ν − 3,

hν−2(L) = hν−3(L− 1) + qL− 1−n
2 hν−2(L− 1) + qL−1hν−2(L− 2);

(2.35)

where

n =

{
0 for NS
1 for R+

−1 for R−.

(2.36)

Note that the first and the last equations follow from the middle equation if one introduces

h−1(L) and hν−1(L) satisfying

h−1(L) = h0(L) (2.37)

and

hν−1(L) = hν−2(L− 1). (2.38)

For ν = 2 there is only the single equation

h0(L) = (1 + qL− 1−n
2 )h0(L− 1) + qL−1h0(L− 2). (2.39)

Observe that the recursion relations in the sectors NS and R± are independent of s′.

The proof of the polynomial identities will be completed by showing that (2.32)–(2.34) hold

for L = 0, 1. We record here the values of the fermionic and bosonic forms at L = 0, 1,

computed directly from (2.10) and (2.26)–(2.28). Notice that there is no dependence on

ν. The fermionic forms are

F
(ν,n)
r′,s′ (0, q) =δr′,s′ ,

F
(ν,0)
r′,s′ (1, q) =






1 + q
1
2 if r′ = s′ = 0

q
1
2 if r′ = s′ ≥ 1

1 if r′ = s′ + 1 or s′ = r′ + 1
0 otherwise,

F
(ν,1)
r′,s′ (1, q) =






1 + q if r′ = s′ = 0
q if r′ = s′ ≥ 1
1 if r′ = s′ + 1 or s′ = r′ + 1
0 otherwise,

F
(ν,−1)
r′,s′ (1, q) =

{
2 if r′ = s′ = 0
1 if r′ = s′ ≥ 1 or r′ = s′ + 1 or s′ = r′ + 1
0 otherwise.

(2.40)
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The bosonic forms are

B
(ν,0)
r′,s′ (0, q) =δr′,s′ ,

B
(ν,0)
r′,s′ (1, q) =






1 + q
1
2 if r′ = s′ = 0

q
1
2 if r′ = s′ ≥ 1

1 if r′ = s′ + 1 or s′ = r′ + 1
0 otherwise,

B
(ν,1)
r′,s′ (0, q) =






1 if r′ = s′ = 0
1
2 if r′ = s′ ≥ 1 or s′ = r′ + 1
0 otherwise,

B
(ν,1)
r′,s′ (1, q) =






1 + q if r′ = s′ = 0
1 + 1

2q if s′ = 1, r′ = 0
1
2

+ 1
2
q if r′ = s′ ≥ 1 or s′ = r′ + 1 ≥ 2

1 if s′ = 0, r′ = 1
1
2

if r′ = s′ + 1 ≥ 2 or s′ = r′ + 2
0 otherwise,

B
(ν,−1)
r′,s′ (0, q) =

{
0 if r′ < s′

(−1)r′+s′

if r′ ≥ s′,

B
(ν,−1)
r′,s′ (1, q) =

{
1 if r′ = s′ = 0 or s′ = r′ + 1
(−1)r′+s′+1 if r′ > s′

0 otherwise.

(2.41)

Equations (2.32)–(2.34) may be readily verified using these expressions. The character

identities (1.11)–(1.13) will follow from the L→ ∞ limit of the polynomial identities (2.32)–

(2.34) thanks to (2.20) and (2.31).

We close this presentation of results and methods with several remarks. First, at-

tention should be drawn to the presence in the fermionic forms of solutions (2.17) to the

system (2.1) with negative values for mν . This is the first time such solutions have been

explicitly encountered, but it is expected that they will also be found in other nonunitary

models such as M(p, p′) for p+ 1 6= p′. Secondly, we direct attention to the occurrence of

linear combinations in the R± sectors (2.33)–(2.34). Such linear combinations have been

seen in several other situations and are presumably a generic feature of Fermi/Bose corre-

spondences although for the unitary model M(p, p + 1) the Bose and Fermi polynomials

appear only singly. We also remark on the crucial role played by the fact that there are

many different polynomials which “finitize” the same fermionic character. This is a general

feature which, for example, occurs in the proof of the identities of the nonunitary M(p, p′)

minimal model [36].
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Finally, we comment that the Fermi and Bose polynomials and the corresponding

recursion relations given here are not particularly unique. As an example, for R+ with

s′ = 0 we have two alternative representations

B
(ν,1)
r′,0 (L, q) = B1

(ν)
r′ (L, q) = B2

(ν)
r′ (L, q) (2.42)

where

B1
(ν)
r′ (L, q) =

∞∑

j=−∞

(−1)j
(
qνj2

T1(L, 2νj + r′ + 1; q
1
2 )

+qνj(j−1)+
(L−r′)

2 T0(L, 2νj + r′; q
1
2 )

)
(2.43)

and

B2
(ν)
r′ (L, q) =

∞∑

j=−∞

(−1)jqνj2

[ ν−1∑

i=r′+1

(−1)i+1+r′

T1(L+ 1, 2νj + i; q
1
2 )

+

ν−2∑

i=r′+1

(−1)i+1+r′

T1(L, 2νj + i; q
1
2 )

]
.

(2.44)

More generally, there are systems of polynomials which reduce to the characters in the

L → ∞ limit and satisfy slightly different systems of equations from the one given here.

However, in all these cases the new polynomials may be expressed as linear combinations

of the polynomials given above.

3. Proof of Fermionic Recursion Relations

We now turn to the proof that the fermionic sums of sec. 2 defined by (2.10) satisfy

the recursion relations (2.35). The proof is based upon the use of telescopic expansions of

products of q-binomial coefficients developed in [22]. In contrast with the many identities

on q-trinomial coefficients we shall use in the proof of the Bosonic identities the only

identities we require for the proof of the Fermionic recursion relations are the elementary

recursion relations for q-binomial coefficients

[
n+m

n

]

q

=

[
n+m− 1

n

]

q

+ qm

[
n+m− 1

n− 1

]

q

(3.1)

and [
n+m

n

]

q

=

[
n+m− 1

n− 1

]

q

+ qn

[
n+m− 1

n

]

q

. (3.2)
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We note that in order for these two identities to be used in our proofs without exception

we need to use the definition (1.7).

In order to give a compact proof we introduce the following symbolic notation for

fermionic sums

qφ(~n, ~A)

{
~P
~Q

}

D

=
∑

D

qφ(~n, ~A)
ν∏

j=1

[
nj +mj + Pj

nj +Qj

]

q

(3.3)

where

φ(~n, ~A) =
1

2
(n2

1 +N2
2 ) +

ν∑

i=3

N2
i + ~A · ~n, (3.4)

and D specifies the domain of summation variables mi and ni which are related by (2.1).

In what follows we will use three domains Dr′,s′ , D̃r′,s′ ,D′
r′,s′ , where

1) Dr′,s′ was defined in sec. 2 by (2.17);

2) D̃r′,s′ is defined by (2.13)–(2.15) and

mν = −2r′, nν−r′ = nν−r′+1 = · · · = nν = 0, n1, n2, · · · , nν−r′−1 ≥ 0; (3.5)

3) D′
r′,s′ is defined the same way as Dr′,s′ except that nν−r′−1 ≥ −1 (whereas it was

nν−r′−1 ≥ 0 for Dr′,s′).

In terms of this notation we write the fermionic polynomials for arbitrary ~A

F ν
r′,s′(L, ~A, q) = qφ(~n, ~A)

{
0

0

}

Dr′,s′

. (3.6)

To avoid bulky formulas we find it convenient to use shorthand notations

Fr′(L) ≡ F ν
r′,s′(L, ~A, q) (3.7)

φ(~n) ≡ φ(~n, ~A) (3.8)

throughout the rest of this section.

All the equations of (2.35) are special cases of the following set of recursion relations

for ν ≥ 3

F0(L) = F1(L− 1) + (qL− 1
2+α + 1)F0(L− 1) + (qL−1+β − 1)F0(L− 2) (3.9)

Fr′(L) = Fr′−1(L− 1) + Fr′+1(L− 1)

+ qL− 1
2+αFr′(L− 1) + (qL−1+β − 1)Fr′(L− 2) for 1 ≤ r′ ≤ ν − 3

(3.10)
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and

Fν−2(L) = Fν−3(L− 1) + qL− 1
2+αFν−1(L− 1) + qL−1+βFν−1(L− 2) (3.11)

where

α = A2 − ã
(s′)
1

β = A1 + α

ã
(s′)
i =

ν∑

j=i

a
(s′)
j = δs′,ν−1δi,1 +

1

2
θ(ν − s′ < i)

(3.12)

and θ(a < b) = 1 if a < b and 0 otherwise.

When ν = 2 the equation (2.39) follows from the single equation

F0(L) = (1 + qL− 1
2+α)F0(L− 1) + qL−1+βF0(L− 2) (3.13)

We will find that in order for (3.9)–(3.11) to hold ~A,~̃a
(s′)

should satisfy

Ai+1 − Ai = 2ã
(s′)
i+1, for 2 ≤ i ≤ ν − 1. (3.14)

As a consequence of (3.14) only A1 and A2 may be specified independently of the inhomo-

geneous vector ~a(s′).

Making use of (1.8), (1.9), (3.12) and

m1 = N2 − n1 (3.15)

one verifies that for ~A defined by (3.14) with

A1 = −n
2
, A2 =

n

2
+ δs′,ν−1; n = 0,±1, (3.16)

α → n
2
, β → 0, φ(~n) → Qf + Lfn,s′ and therefore the fermionic forms (3.6) and recursion

relations (3.9)–(3.11) reduce to (2.10) and (2.35).

Let us denote the set of solutions of (2.1) with the inhomogeneous vector (2.12) as

{~n, ~m}L,r′,s′ . Then, if we define vectors ~el and ~El,k by

(~el)i = δl,i ~El,k = −
k∑

i=l

~ei (3.17)
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we may use (2.1) to verify the following relations

{~n, ~m}L−1,r′−1,s′ = {~n, ~m}L,r′,s′ + {0, ~E2,ν−r′}

{~n, ~m}L−1,r′,s′ = {~n, ~m}L,r′,s′ + {−~e2,−~e1}

{~n, ~m}L−2,r′,s′ = {~n, ~m}L,r′,s′ + {−~e1 − ~e2, 0}

{~n, ~m}L−2,r′,s′ = {~n, ~m}L,r′,s′ + {~eν−r′−1 − ~eν−r′ , 2 ~E2,ν−r′−1} for ν − r′ ≥ 3

{~n, ~m}L−1,r′+1,s′ = {~n, ~m}L,r′,s′ + {~eν−r′−1 − ~eν−r′ , ~E2,ν−r′−1} for ν − r′ ≥ 3

.

(3.18)

Furthermore if we recall

L = n1 + a1 +
ν∑

i=2

(2i− 3)(ni + ai) +mν

L = n1 +N2 +m2 + ã1

mi = 2

ν∑

l=i+1

(Nl + ãl) +mν ; i ≥ 2

(3.19)

and use (3.14), we may verify the following identities for φ(~n, ~A)

φ(~n) + n1 +m2 = φ(~n− ~e2) + L− 1

2
+ α

φ(~n) +m2 = φ(~n− ~e1 − ~e2) + L− 1 + β

[φ+ml](~n− ~el−1 + ~el + ~eν−r′−1 − ~eν−r′) = φ̃(~n) +ml−1 − 1, for 3 ≤ l ≤ ν − r′

with φ̃(~n) ≡ φ(~n+ ~eν−r′−1 − ~eν−r′).

(3.20)

Then from (3.18) and (3.20) we obtain the following expressions:

Fr′(L) = qφ(~n)

{
0

0

}

Dr′,s′

(3.21)

Fr′−1(L− 1) = qφ(~n)

{
~E2,ν−r′

0

}

Dr′,s′

− B (3.22)

qL− 1
2+αFr′(L− 1) = qφ(~n)+n1+m2

{
~E1,2

−~e2

}

Dr′,s′

(3.23)
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qL−1+βFr′(L− 2) = qφ(~n)+m2

{ ~E1,2

~E1,2

}

Dr′,s′

(3.24)

Fr′(L− 2) = qφ̃(~n)

{
2 ~E2,ν−r′−1 + ~eν−r′−1 − ~eν−r′

~eν−r′−1 − ~eν−r′

}

D′
r′,s′

(3.25)

Fr′+1(L− 1) = qφ̃(~n)

{
~E2,ν−r′−1 + ~eν−r′−1 − ~eν−r′

~eν−r′−1 − ~eν−r′

}

D′
r′,s′

+ B (3.26)

where

B ≡ qφ(~n)θ(s′ > r′)

{
~E2,ν−r′−1

0

}

D̃r′,s′

(3.27)

and θ(s′ > r′) = 1 if s′ > r′ and 0 otherwise. We note that the term B arises because in

general Dr′,s′ 6= Dr′±1,s′ .

The method we use to prove (3.9)–(3.11) is the telescopic expansion technique of

[22] which is based on the following two identities which follow from (3.1):

1)Telescopic expansion from right to left

{
~P
~Q

}
=

{~P + ~El,k

~Q

}
+

k∑

i=l

qmi+Pi−Qi

{ ~P + ~El,i

~Q− ~ei

}
; (3.28)

2)Telescopic expansion from left to right

{
~P
~Q

}
=

{~P + ~El,k

~Q

}
+

k∑

i=l

qmi+Pi−Qi

{ ~P + ~Ei,k

~Q− ~ei

}
. (3.29)

The proof of (3.9) will follow from (3.10) with the definition F−1(L) ≡ F0(L). To

prove (3.10) we begin by applying the right to left telescopic expansion (3.28) to Fr(L) to

obtain

Fr′(L) = qφ(~n)

{
~E2,ν−r′

0

}

Dr′,s′

+
ν−r′∑

l=2

qφ(~n)+ml

{
~E2,l

−~el

}

Dr′,s′

(3.30)

and then further expand the term in the sum with l = 2 using (3.2) to get

Fr′(L) = qφ(~n)

{
~E2,ν−r′

0

}

Dr′,s′

− B

+ qφ(~n)+n1+m2

{
~E1,2

−~e2

}

Dr′,s′

+ qφ(~n)+m2

{ ~E1,2

~E1,2

}

Dr′,s′

+ Z

(3.31)
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where

Z ≡
ν−r′∑

l=3

qφ(~n)+ml

{
~E2,l

−~el

}

Dr′,s′

+ B. (3.32)

Then making use of (3.22)–(3.24) we find

Fr′(L) − Fr′−1(L− 1) − qL− 1
2+αFr′(L− 1) − qL−1+βFr′(L− 2) = Z. (3.33)

We then change the summation variables in the lth term in the expansion of Z as

~n→ ~n− ~el−1 + ~el + ~eν−r′−1 − ~eν−r′ for 3 ≤ l ≤ ν − r′ (3.34)

where we note that this change depends on l and sends the domain Dr′,s′ to D′
r′,s′ . Thus,

making use of (3.20), we obtain

Z =
ν−r′−1∑

l=2

qφ̃(~n)+ml−1

{
~E2,ν−r′−1 + ~El,ν−r′−1 + ~eν−r′−1 − ~eν−r′

−~el + ~eν−r′−1 − ~eν−r′

}

D′
r′,s′

+ B. (3.35)

To complete the proof we expand Fr′+1(L − 1) − B given by (3.26) using the left to

right telescopic expansion (3.29) as

Fr′+1(L− 1) = qφ̃(~n)

{
~E2,ν−r′−1 + ~eν−r′−1 − ~eν−r′

~eν−r′−1 − ~eν−r′

}

D′
r′,s′

+ B

= qφ̃(~n)

{
2 ~E2,ν−r′−1 + ~eν−r′−1 − ~eν−r′

~eν−r′−1 − ~eν−r′

}

D′
r′,s′

+
ν−r′−1∑

l=2

qφ̃(~n)+ml−1

{
~E2,ν−r′−1 + ~El,ν−r′−1 + ~eν−r′−1 − ~eν−r′

−~el + ~eν−r′−1 − ~eν−r′

}

D′
r′,s′

+ B.

(3.36)

Thus comparing the right hand side of (3.36) with (3.25) and (3.35) we obtain

Fr′+1(L− 1) − Fr′(L− 2) = Z (3.37)

and hence, the desired result (3.10) follows from comparing (3.33) and (3.37).

It remains to prove (3.11). To do this we expand Fν−2(L) as

Fν−2(L) = qφ(~n)

{
~E2,2

0

}

Dν−2,s′

+ qφ(~n)+n1+m2

{
~E1,2

−~e2

}

Dν−2,s′

+ qφ(~n)+m2

{ ~E1,2

~E1,2

}

Dν−2,s′

(3.38)
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from which (3.11) follows upon using (3.22)–(3.24).

The proof of the equation (3.13) for ν = 2 is completely analogous to the proof

of (3.11) and will be omitted.

We close this section with a few remarks. The major new feature of this derivation

which did not occur in [22] is the occurrence of the extra terms (2.17) in the allowed range

of solutions Dr′,s′ of the constraint equations (2.1). These terms are forced upon us by the

necessity of using the recursion relation (3.1) for the case m = n = 0 and is what requires

us to keep track of the three different domains of definitions Dr′,s′ , D′
r′,s′ and D̃r′,s′ and

the resulting boundary terms B. This complicates the presentation, but since none of these

terms make an explicit contribution to the equations we advise the reader to ignore them

on first reading. Clearly, the method used can be extended to the general case where ~̃a
(s′)

and ~A are subject only to (3.14). We plan to discuss this in a separate publication.

4. Proof of Bosonic Recursion Relations

Our proof that the bosonic forms (2.26)–(2.28) satisfy the recursion relations (2.35) re-

lies on various identities satisfied by the q-trinomial coefficients. Some of these have ap-

peared previously in the literature [45]–[47] and some occur in this proof for the first time.

For clarity we will first list all the identities we shall require and relegate the proofs of the

new ones to the Appendix. We will then use these identities to verify the bosonic form of

the recursion relations. The three distinct cases will be considered in separate subsections

for ν ≥ 3. The special case ν = 2 is easily treated by the same methods but the proof will

be omitted.

4.1. Identities of q-trinomials

In the course of our proofs we will need several identities satisfied by the q-trinomials.

These identities are of three types:

A) Pascal triangle identities which are nontrivial for q = 1 :

T−n(L,A; q
1
2 ) =T−n(L− 1, A+ 1; q

1
2 ) + T−n(L− 1, A− 1; q

1
2 )

+qL− 1−n
2 T−n(L− 1, A; q

1
2 ) + (qL−1 − 1)T−n(L− 2, A; q

1
2 ),

(4.1)

T1(L,A; q
1
2 ) − T1(L− 1, A; q

1
2 )

= q
L+A

2 T0(L− 1, A+ 1; q
1
2 ) + q

L−A
2 T0(L− 1, A− 1; q

1
2 ),

(4.2)
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B) Identities derivable from the Pascal triangle identities (for q = 1):

T0(L,A; q
1
2 ) − T0(L− 1, A− 1; q

1
2 )

= qA+ 1
2

[
T0(L,A+ 1; q

1
2 ) − T0(L− 1, A+ 2; q

1
2 )

]
,

(4.3)

T1(L,A; q
1
2 ) − T1(L,A+ 1; q

1
2 )

= q
L−A

2 T0(L− 1, A− 1; q
1
2 ) − q

L+A+1
2 T0(L− 1, A+ 2; q

1
2 ),

(4.4)

T1(L+ 1, A; q
1
2 ) + T1(L,A; q

1
2 )

= T−1(L,A+ 1; q
1
2 ) + T−1(L,A− 1; q

1
2 ) + 2T−1(L,A; q

1
2 )

(4.5)

C) Identities which become tautologies when q = 1 :

T1(L,A; q
1
2 ) − T1(L,A+ 1; q

1
2 )

= q
L−A

2 T0(L,A; q
1
2 ) − q

L+A+1
2 T0(L,A+ 1; q

1
2 ),

(4.6)

T−1(L,A; q
1
2 ) − T−1(L− 1, A± 1; q

1
2 )

= q
L∓A

2 T0(L,A; q
1
2 ) − qLT−1(L− 1, A± 1; q

1
2 )

(4.7)

q
L±A

2 T0(L,A; q
1
2 ) − T1(L,A; q

1
2 )

= (qL − 1)[T−1(L− 1, A; q
1
2 ) + T−1(L− 1, A∓ 1; q

1
2 )]

(4.8)

T0(L,A; q
1
2 ) − T0(L,A+ 2; q

1
2 )

= q
L−A

2 T1(L,A; q
1
2 ) − q

L+2+A
2 T1(L,A+ 2; q

1
2 )

(4.9)

The identities (4.1) with n = 0 and (4.3) are needed for the proof in the NS sector.

Identity (4.1) is proven in the appendix and (4.3) follows by combining eqns. (2.26) and

(2.29) of [45].

The identities (4.1) with n = −1, (4.2),(4.4) and (4.6) are needed for the R− Ra-

mond sector. Identity (4.2) is eqn.(2.16) of [45], identity (4.6) is eqn. (2.20) of [45], and

identity (4.4) follows from combining (4.3) and (4.6).

The identities (4.1) with n = 1, (4.7)–(4.9) are needed for the R+ Ramond sector.

Identity (4.7) is (2.23) of [45] with B = A + 1, identity (4.8) is obtained by combining

(2.23) and (2.24) of [45] both with B = A + 1 and identity (4.9) will be proven in the

appendix. Finally, identity (4.5) is needed to establish an R+ − R− connection and to

derive (1.22). Identity (4.5) will also be proven in the appendix.
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4.2. Proof of the generic equations for all sectors

We separate the recursion relations (2.35) into two classes: the equations for

h0, · · · , hν−3 which we call generic and the last equation of (2.35) (or equivalently (2.38))

which we call the closing equation. The proof of the generic equations is identical for the

three separate cases of NS and R±. In all cases the generic equation follows immediately

from the identity (4.1) and the fact that the bosonic polynomials (2.26), (2.27), (2.28) are

linear combinations of T−n with n given by (2.36). The identity (4.1) guarantees that the

generic recursion relation holds for each term separately in the sum over j. Consequently,

these generic equations do not determine the factors (−1)jqνj2+(s′+
1−|n|

2 )j which appear

in (2.26)–(2.28). These factors are determined by the closing equation and for this the

three cases need to be considered separately.

To keep notations manageable we will write Tn(L,A) instead of Tn(L,A; q
1
2 ) through-

out the rest of this paper.

4.3. Proof of the closing equation for the Neveu-Schwarz sector

To verify the closing equation (2.38) for theNS bosonic polynomials (2.26) we consider

INS(L) = B
(ν,0)
ν−1,s′(L, q) −B

(ν,0)
ν−2,s′(L− 1, q) (4.10)

and substitute (2.26) to find

INS(L) =
∞∑

j=−∞

(−1)jqνj2+(s′+ 1
2 )j

(
T0(L, 2νj + s′ − ν + 1) + T0(L, 2νj + s′ + ν)

− T0(L− 1, 2νj + s′ − ν + 2) − T0(L− 1, 2νj + s′ + ν − 1)

)
.

(4.11)

This does not vanish term by term under the summation sign. However, if we first send

j → −j in the first and third terms inside of
(
· · ·

)
and use (2.24) we have

INS(L) =
∞∑

j=−∞

(−1)jqνj2

(
q(s

′+ 1
2 )j

[
T0(L, 2νj + ν + s′) − T0(L− 1, 2νj + ν + s′ − 1)

]

+ q−(s′+ 1
2 )j

[
T0(L, 2νj + ν − s′ − 1) − T0(L− 1, 2νj + ν − s′ − 2)

])
.

(4.12)

In this sum the terms with j and −j − 1 cancel by use of (4.3). Thus we have com-

pleted the verification that the NS bosonic polynomials (2.26) satisfy the recursion rela-

tions (2.35) with n = 0.
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4.4. Proof of the closing equation for the R− Ramond sector

To verify the closing equation (2.38) for the R− polynomials (2.28) we consider

IR−(L) = B
(ν,−1)
ν−1,s′(L, q) −B

(ν,−1)
ν−2,s′(L− 1, q) (4.13)

and substitute (2.28) to find

IR−(L) =
∞∑

j=−∞

(−1)jqνj2+s′j

×
( ν−1∑

i=−(ν−1)

(−1)ν−1+iT1(L, 2νj + s′ + i)

−
ν−2∑

i=−(ν−2)

(−1)ν−2+iT1(L− 1, 2νj + s′ + i)

)
.

(4.14)

We now transform the summand of (4.14) for each j by adding and subtracting T1(L −
1, 2νj + s′ − 1 + ν) and regrouping terms to obtain

ν−2∑

i=0

[
T1(L, 2νj + s′ + 1 − ν + 2i) − T1(L, 2νj + s′ + 2 − ν + 2i)

]

+
[
T1(L, 2ν + s′ − 1 + ν) − T1(L− 1, 2νj + s′ − 1 + ν)

]

−
ν−2∑

i=0

[
T1(L− 1, 2νj + s′ + 2 − ν + 2i) − T1(L− 1, 2νj + s′ + 3 − ν + 2i)

]
.

(4.15)

Then we use (4.4) on the first line, (4.2) on the second line and (4.6) on the third line and

note that all terms cancel in pairs except

q
L−1+ν

2

(
q

2νj+s′

2 T0(L− 1, 2νj + s′ + ν) + q−
2νj+s′

2 T0(L− 1, 2νj + s′ − ν)

)
. (4.16)

Thus we have

IR−(L) =q
L−1+ν

2

∞∑

j=−∞

(−1)jqνj2+s′j

×
[
q

2νj+s′

2 T0(L− 1, 2νj + s′ + ν) + q−
2νj+s′

2 T0(L− 1, 2νj + s′ − ν)
]
.

(4.17)

which is seen to vanish if we replace j by j + 1 in the second of two terms in
[
· · ·

]
. Thus

we have completed the verification that the R− bosonic polynomials (2.28) satisfy the

recursion relations (2.35) with n = −1.
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4.5. Proof of the closing equation for the R+ Ramond sector, R+ −R− relations

To verify the closing equation (2.38) for the R+ polynomials (2.27) we consider

IR+(L) = B
(ν,1)
ν−1,s′(L, q) −B

(ν,1)
ν−2,s′(L− 1, q) (4.18)

and substitute (2.27) to find

IR+(L) =

∞∑

j=−∞

(−1)jqνj2+s′j

(
[T−1(L, 2νj + s′ − ν + 1) − T−1(L− 1, 2νj + s′ − ν + 2)]

+[T−1(L, 2νj + s′ + ν) − T−1(L− 1, 2νj + s′ + ν − 1)]

+[T−1(L, 2νj + s′ − ν) − T−1(L− 1, 2νj + s′ − ν + 1)]

+[T−1(L, 2νj + s′ + ν − 1) − T−1(L− 1, 2νj + s′ + ν − 2)]

)
.

(4.19)

We now use (4.7) on each of the four terms inside of
(
· · ·

)
to obtain after regrouping

IR+(L) =
∞∑

j=−∞

(−1)jqνj2+s′j×
(

[q
L−(s′−ν+1+2νj)

2 T0(L, 2νj + s′ − ν + 1) + q
L+(s′+ν−1+2νj)

2 T0(L, 2νj + s′ + ν − 1)]

− qL[T−1(L− 1, 2νj + s′ − ν + 2) + T−1(L− 1, 2νj + s′ − ν + 1)]

− qL[T−1(L− 1, 2νj + s′ + ν − 1) + T−1(L− 1, 2νj + s′ + ν − 2)]

+ [q
L+s′+ν+2νj

2 T0(L, 2νj + s′ + ν) + q
L−(s′−ν+2νj)

2 T0(L, 2νj + s′ − ν)]

)
.

(4.20)

The expression in the last set of the square brackets is seen to vanish if we take j → j + 1

in the second of the two terms in [· · ·]. Then, if we multiply both sides of (4.20) by (qL−1)

and use (4.8) on the contents of the second and third sets of square brackets, we obtain

(qL − 1)IR+(L) =
∞∑

j=−∞

qνj2+s′j×
(
−q

L+s′+ν−1+2νj

2 T0(L, 2νj + s′ + ν − 1) − q
L−(s′−ν+1+2νj)

2 T0(L, 2νj + s′ − ν + 1)

+ qLT1(L, 2νj + s′ + ν − 1) + qLT1(L, 2νj + s′ − ν + 1)

)
.

(4.21)
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We now let j → j − 1 in the first and third terms in
(
· · ·

)
to obtain the expression

(qL − 1)IR+(L) =

∞∑

j−∞

(−1)jqνj(j−1)+s′j+ L+ν−s′−1
2

×
(
T0(L, 2νj + s′ − ν − 1) − T0(L, s

′ − ν + 1)

− q
L−(s′−ν−1+2νj)

2 T1(L, 2νj + s′ − ν − 1)

+ q
L+(s′−ν+1+2νj)

2 T1(L, 2νj + s′ − ν + 1)

)

(4.22)

which vanishes term by term under the summation sign due to (4.9). Thus we have

completed the verification that the R+ bosonic polynomials (2.27) satisfy the recursion

relations (2.35) with n = 1.

We conclude this section by noting the following intriguing identities

F
(ν,−1)
r′,s′ (L+ 1, q) + F

(ν,−1)
r′,s′ (L, q) = 2

[
B

(ν,1)
r′,s′ (L, q) +B

(ν,1)
r′,s′+1(L, q)

]
; s′ 6= ν − 1

F
(ν,−1)
r′,ν−1(L+ 1, q) + F

(ν,−1)
r′,ν−1(L, q) = 2B

(ν,1)
r′,ν−1(L, q),

(4.23)

which can be easily proven with the help of (2.34) and (4.5).

These identities reveal the intimate connection between R+ and R− representations of the

Ramond sector characters.

5. The Indices

In this section we turn to the objects F̃
(ν,n)
s′ (q) and B̃

(ν,n)
s′ (q) and prove the properties

discussed in the introduction. To this end we introduce the polynomials F̃
(ν,n)
r′,s′ (L, q) as

F̃
(ν,n)
r′,s′ (L, q) =

∑

Dr′,s′

(−1)m1qQf+Lfn,s′

ν∏

j=1

[
nj +mj

nj

]

q

; n = 0,±1, r′ = 0, 1, · · · , ν − 2

(5.1)

where Qf, Lfn,s′ , and Dr′,s′ are defined in (1.8), (1.9) and (2.17). One can easily establish

lim
L→∞

F̃
(ν,n)
r′,s′ (L, q) = F̃

(ν,n)
s′ (q) (5.2)

and

F̃
(ν,0)
r′,s′ (L, q) = F

(ν,0)
r′,s′ (L, qe2πi) (5.3)
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which hold for all r′.

It is straightforward to repeat the analysis carried out in secs. 3 and 4 to prove

recursion relations for F̃
(ν,n)
r′,s′ (L, q)

F̃
(ν,n)
0,s′ (L, q) = F̃

(ν,n)
1,s′ (L− 1, q) + (1− qL− 1−n

2 )F̃
(ν,n)
0,s′ (L− 1, q) + (qL−1 − 1)F̃

(ν,n)
0,s′ (L− 2, q),

(5.4)

F̃
(ν,n)
r′,s′ (L, q) = F̃

(ν,n)
r′−1,s′(L− 1, q) + F̃

(ν,n)
r′+1,s′(L− 1, q)

− qL− 1−n
2 F̃

(ν,n)
r′,s′ (L− 1, q) + (qL−1 − 1)F̃

(ν,n)
r′,s′ (L− 2, q) for 1 ≤ r′ ≤ ν − 3,

(5.5)

F̃
(ν,n)
ν−2,s′(L, q) = F̃

(ν,n)
ν−3,s′(L− 1, q)− qL− 1−n

2 F̃
(ν,n)
ν−2,s′(L− 1, q) + qL−1F̃

(ν,n)
ν−2,s′(L− 2, q); (5.6)

with ν ≥ 3,

F̃
(2,n)
0,s′ (L, q) = (1 − qL− 1−n

2 )F̃
(2,n)
0,s′ (L− 1, q) + qL−1F̃

(2,n)
0,s′ (L− 2, q) (5.7)

and identities

F̃
(ν,0)
r′,s′ (L, q) = B̃

(ν,0)
r′,s′ (L, q) (5.8)

B̃
(ν,1)
r′,s′ (L, q) = F̃

(ν,1)
r′,s′ (L, q) − F̃

(ν,1)
r′,s′−1(L, q), s′ 6= 0 (5.9)

where

B̃
(ν,0)
r′,s′ (L, q) = (−1)L+s′+r′

∞∑

j=−∞

qνj2+(s′+ 1
2 )j

(
T0(L, 2νj + s′ − r′)

− T0(L, 2νj + s′ + 1 + r′)

) (5.10)

and

B̃
(ν,1)
r′,s′ (L, q) = (−1)L+r′+s′+1

∞∑

j=−∞

qνj2+s′j

×
(
T−1(L, 2νj + s′ + r′ + 1) − T−1(L, 2νj + s′ − r′)

+ T−1(L, 2νj + s′ + r′) − T−1(L, 2νj + s′ − r′ − 1)

)

.

(5.11)

Identity (5.10) could have been proven directly by simply replacing q
1
2 with −q 1

2

in (2.32) and then using (2.25) and (5.3). To avoid confusion we want to stress that

B̃
(ν,1)
0 (q) defined by (1.20) is not L→ ∞ limit of B̃

(ν,1)
r′,0 (L, q).
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If we let L→ ∞ in (5.9)and apply the limiting formulas (2.29) with n = 1 and (5.2) we

obtain

F̃
(ν,1)
s′ (q) = F̃

(ν,1)
s′−1 (q), s′ 6= 0, (5.12)

i.e. F̃
(ν,1)
s′ (q) does not depend on s′. In fact,

F̃
(ν,1)
s′ (q) = 1 (5.13)

as stated in the introduction (1.19). To see this, we rearrange (5.4)- (5.7) in the following

fashion (suppressing the argument q for compactness):

1) For ν = 2

F̃
(2,1)
0,s′ (L) + qLF̃

(2,1)
0,s′ (L− 1) = F̃

(2,1)
0,s′ (L− 1) + qL−1F̃

(2,1)
0,s′ (L− 2) (5.14)

2) For ν ≥ 3

F̃
(ν,1)
0,s′ (L) + qLF̃

(ν,1)
0,s′ (L− 1) = F̃

(ν,1)
0,s′ (L− 1) + F̃

(ν,1)
1,s′ (L− 1) + (qL−1 − 1)F̃

(ν,1)
0,s′ (L− 2),

F̃
(ν,1)
r′,s′ (L) + qLF̃

(ν,1)
r′,s′ (L− 1) − F̃

(ν,1)
r′−1,s′(L− 1) = F̃

(ν,1)
r′+1,s′(L− 1) + (qL−1 − 1)F̃

(ν,1)
r′,s′ (L− 2)

for 1 ≤ r′ ≤ ν − 3,

F̃
(ν,1)
ν−2,s′(L) + qLF̃

(ν,1)
ν−2,s′(L− 1) − F̃

(ν,1)
ν−3,s′(L− 1) = qL−1F̃

(ν,1)
ν−2,s′(L− 2).

(5.15)

We add together the ν − 1 equations to find

ν−2∑

r′=0

[
F̃

(ν,1)
r′,s′ (L, q) + qLF̃

(ν,1)
r′,s′ (L− 1, q)

]
−

ν−3∑

r′=0

F̃
(ν,1)
r′,s′ (L− 1, q)

=

ν−2∑

r′=0

[
F̃

(ν,1)
r′,s′ (L− 1, q) + qL−1F̃

(ν,1)
r′,s′ (L− 2, q)

]
−

ν−3∑

r′=0

F̃
(ν,1)
r′,s′ (L− 2, q).

(5.16)

The above is of the form I(L) = I(L − 1). Thus both sides are separately equal to a

constant independent of L which by evaluation for small L is found to be 1 and hence

ν−2∑

r′=0

[
F̃

(ν,1)
r′,s′ (L, q) + qLF̃

(ν,1)
r′,s′ (L− 1, q)

]
−

ν−3∑

r′=0

F̃
(ν,1)
r′,s′ (L− 1, q) = 1. (5.17)

Taking (5.2) into account we may send L→ ∞ in (5.17) to derive

F̃
(ν,1)
s′ (q) = lim

L→∞
F̃

(ν,1)
r′,s′ (L, q) = 1 (5.18)
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which proves (1.19) of the introduction.

When ν = 2 there is yet another bosonic companion of F̃
(2,1)
0,s′ (L, q), s′ = 0, 1. Indeed,

in this case (5.17) becomes a simple first order difference equation

F̃
(2,1)
0,s′ (L, q) + qLF̃

(2,1)
0,s′ (L− 1, q) = 1. (5.19)

By direct evaluation, one finds boundary conditions for (5.19)

F̃
(2,1)
0,s′ (s′, q) = 1, s′ = 0, 1. (5.20)

It is now trivial to solve (5.19) and (5.20) to obtain

F̃
(2,1)
0,s′ (L, q) =

L−s′∑

j=0

(−1)jqLj−
j(j−1)

2 . (5.21)

From this the limit (5.18) is immediate.

Next let us consider F̃
(2,−1)
0,s′ (L, q), s′ = 0, 1. If we define

Xs′(L, q) = F̃
(2,−1)
0,s′ (L, q) − F̃

(2,−1)
0,s′ (L− 1, q), (5.22)

then the second order difference equation (5.7) can be rewritten in the first order form

Xs′(L, q) = −qL−1Xs′(L− 1, q). (5.23)

This is easily solved to get

Xs′(L, q) = (−1)L−1q
L(L−1)

2 Xs′(1, q) (5.24)

where X0(1, q) = −X1(1, q) = −1. Then, since

F̃
(2,−1)
0,0 (0, q) = F̃

(2,−1)
0,1 (1, q) = 1 (5.25)

we obtain from (5.22) and (5.24)

F̃
(2,−1)
0,0 (L, q) = 1 +

L∑

j=1

(−1)jq
j(j−1)

2

F̃
(2,−1)
0,1 (L, q) = 1 −

L∑

j=2

(−1)jq
j(j−1)

2 .

(5.26)
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From this we note that

F̃
(2,−1)
0,1 (L, q) + F̃

(2,−1)
0,0 (L, q) = 1. (5.27)

The equality with the false theta functions (1.22) is easily established by letting L → ∞
in (5.26) and (5.27).

In fact, equation (5.27) can be generalized to

1 =

ν−1∑

s′=0

F̃
(ν,−1)
r′,s′ (L, q). (5.28)

To prove (5.28) it is sufficient to notice that a constant is always a solution to (5.4)–

(5.6) with n = −1 and that (5.28) holds true for L = 0, 1. Letting L → ∞ in (5.28) one

recovers (1.21), (1.24) for s′ = 0.

To verify (1.21)–(1.24) in general, we will need the following analogue of (4.23)

F̃
(ν,−1)
r′,s′ (L+ 1, q) − F̃

(ν,−1)
r′,s′ (L, q) = B̃

(ν,1)
r′,s′+1(L, q)− B̃

(ν,1)
r′,s′ (L, q). (5.29)

which is proven by observing that lhs and rhs satisfy the same equations (5.4), (5.5) with

n = 1 and that (5.29) holds true for L = 0, 1. Then we use (5.29) along with

F̃
(ν,−1)
r′,s′ (L = 0, q) = δr′,s′ (5.30)

to find the bosonic companion of F̃
(ν,−1)
r′,s′ (L, q)

F̃
(ν,−1)
r′,s′ (L+ 1, q) =

L∑

l=0

{
B̃

(ν,1)
r′,s′+1(l, q)− B̃

(ν,1)
r′,s′ (l, q)

}
+ δr′,s′ . (5.31)

To proceed further, we set r′ = 0 and send L to infinity in (5.31) and use (5.11) to find

F̃
(ν,−1)
s′ (q) = lim

L→∞
F̃

(ν,−1)
0,s′ (L, q) = (−1)s′

{ ∞∑

j=−∞

qνj2+s′jg(2νj + s′, q)

+

∞∑

j=−∞

qνj2+(s′+1)jg(2νj + s′ + 1, q)

}
+ δ0,s′

(5.32)

where

g(j, q) =
∞∑

l=0

(−1)l
[
T−1(l, j + 1) − T−1(l, j − 1)

]
. (5.33)
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The function g(j, q) has the two important properties:

g(−j, q) = −g(j, q); j ∈ Z (5.34)

and

g(j, q) + g(j + 1, q) = −δj,0; j ∈ Z, j ≥ 0. (5.35)

Formula (5.34) is a simple consequence of (2.24) and formula (5.35) is proven in the ap-

pendix. Clearly, equations (5.34) and (5.35) specify g(j) uniquely as

g(j) =

{
(−1)jsign(j); j 6= 0
0; j = 0.

(5.36)

Combining (5.36) and (5.32) we obtain

F̃
(ν,−1)
s′ (q) = I

(ν)
s′ (q) − I

(ν)
s′+1(q) (5.37)

with I
(ν)
s′ (q) defined by (1.23). Thus, we completed the proof of (1.22).

To the best of our knowledge, q-trinomial representation (5.31) of the ”truncated”

false theta function has never appeared in the literature before.

We conclude this section with a derivation of the q → 1− limit (1.25) of the false

theta function (1.23) I
(ν)
s′ (q) given in the introduction. To this end we rewrite the sum

in (1.23) as

I
(ν)
s′ (q) = 1 +

∞∑

j=1

e−νx2(j)
(
e−s′x(j)(| ln q|)

1
2 − es′x(j)(| ln q|)

1
2
)

(5.38)

where

x(j) = j(| ln q|) 1
2 . (5.39)

As q → 1− the rhs of (5.38) is dominated by large j terms and, as a result, can be

approximated by an integral

I
(ν)
s′ (q) ∼ 1 +

∫ ∞

0

dx

(| ln q|) 1
2

e−νx2

(e−s′x(| ln q|)
1
2 − es′x(| ln q|)

1
2 ). (5.40)

Expanding

e−s′x(| ln q|)
1
2 − es′x(| ln q|)

1
2 = −2s′x(ln q|) 1

2 +O(ln q) (5.41)

we find the limit

lim
q→1

I
(ν)
s′ (q) = 1 − 2s′

∫ ∞

0

xe−νx2

dx

= 1 − s′

ν

. (5.42)

The formula above is the result (1.25) we set out to obtain.
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6. Duality q → q−1

The bosonic and fermionic polynomials given in sec. 2 reduce to the characters of the

SM(2, 4ν) superconformal model as L → ∞ when q < 1. However, when q > 1 it is also

possible to take the L → ∞ limit after removing a suitable power q. We show here that

this leads to the linear combinations of the characters of the minimal model M(2ν−1, 4ν)

where we recall that for all models M(p, p′) the bosonic form of the characters (normalized

to one at q = 0) is [55]

χ(p,p′)
r,s (q) = χ

(p,p′)
p−r,p′−s(q) =

1

(q)∞

∞∑

j=−∞

(qj(jpp′+rp′−sp) − q(jp+r)(jp′+s)). (6.1)

We study the region q > 1 by making the dual transformation q → q−1 in the

bosonic/fermionic polynomials. It is worth mentioning that this operation has a direct

physical meaning: it transforms particles into holes and vice-versa.

We use the definition (2.22) to express the dual polynomials in terms of
(
L,A−n;q

A

)
2
:

1) in NS as

q
L2

2 B
(ν,0)
r′,s′ (L, q−1) =

∞∑

j=−∞

(−1)jq−νj2−(s′+ 1
2 )j

(
q

(2νj+s′−r′)2

2

(
L, 2νj + s′ − r′; q

2νj + s′ − r′

)

2

+ q
(2νj+s′+1+r′)2

2

(
L, 2νj + s′ + r′ + 1; q

2νj + r′ + 1

)

2

)

(6.2)

2) in R− as

q
L(L−1)

2 B
(ν,−1)
r′,s′ (L, q−1) =

∞∑

j=−∞

(−1)jq−νj2−s′j

r′∑

i=−r′

(−1)r′+iq
(2νj+s′+i)(2νj+s′+i−1)

2

(
L, 2νj + s′ + i− 1; q

2νj + s′ + i

)

2

.

(6.3)

3) in R+ as

q
L(L+1)

2 B
(ν,1)
r′,s′ (L, q−1) =

1

2

∞∑

j=−∞

(−1)jq−νj2−s′j

(
q

(2νj+s′−r′−1)(2νj+s′−r′)
2

[(L, 2νj + s′ − r′; q

2νj + s′ − r′ − 1

)

2

+ q2νj+s′−r′

(
L, 2νj + s′ − r′ + 1; q

2νj + s′ − r′

)

2

]

+ q
(2νj+s′+r′)(2νj+s′+r′+1)

2

[(L, 2νj + s′ + r′ + 1; q

2νj + s′ + r′

)

2

+ q2νj+s′+r′+1

(
L, 2νj + s′ + r′ + 2; q

2νj + s′ + r′ + 1

)

2

])

(6.4)

30



In this form we may now let L→ ∞ by using two limiting results of [45]

lim
L→∞

(
L,A; q

A

)

2

=
1

(q)∞
(6.5)

lim
L→∞

(
L,A− 1; q

A

)

2

=
1 + qA

(q)∞
(6.6)

and the asymptotic formula which may be derived from (6.5) and (2.23) of [45]

lim
L→∞

[(
L,A+ 1; q

A

)

2

+ qA+1

(
L,A+ 2; q

A+ 1

)

2

]
=

1

(q)∞
(6.7)

to obtain for n = 0,±1

(1 + θ(n > 0)) lim
L→∞

q
L(L+n)

2 B
(ν,n)
r′,s′ (L, q−1)

=q
(s′−r′)(s′−r′−|n|)

2 χ
(2ν−1,4ν)
ν−r′−1,2ν−2s′−1+|n|(q)

+q
(s′+r′+1)(s′+r′+1−|n|)

2 χ
(2ν−1,4ν)
ν+r′,2ν−2s′−1+|n|(q).

(6.8)

The equation (6.8) demonstrates that in the limit L → ∞ the model SM(2, 4ν)

is related to the model M(2ν − 1, 4ν) by the dual transformation q → 1
q
. This latter

nonunitary minimal model is a special case of the models M(p, p′) studied in [36]. It is of

interest to note that while dual polynomials (6.2)–(6.4) yield M(2ν − 1, 4ν) characters in

the limit L → ∞, the dual polynomials themselves are not the same as those of [56] and

[36]. This emphasizes the fact that there are many different polynomial expressions which

yield the same character in the L → ∞ limit. Indeed the polynomials of this paper

and those of [36] must be different because in [36] the M(2ν − 1, 4ν) polynomials

transform into the M(2ν+1, 4ν) polynomials while the polynomials (6.2)–(6.4) transform

into SM(2, 4ν) ones.

Curiously enough, the SM(2, 8) model is, in fact, self-dual

lim
L→∞

q
L2

2 B
(2,0)
0,s′ (L, q−1) = q

s′

2

(
χ

(3,8)
1,3−2s′(q) + q

1
2+s′

χ
(3,8)
2,3−2s′(q)

)
= q

s′

2 χ̂
(2,8)
1,3−2s′(q) (6.9)

lim
L→∞

q
L(L±1)

2 B
(2,±1)
0,s′ (L, q−1) =

2

3 ± 1
q

s′−1
2

(
χ

(3,8)
1,4−2s′(q) + qχ

(3,8)
2,4−2s′(q)

)

=
2

3 ± 1
q

s′−1
2 (1 + qδs′,0)χ̂

(2,8)
1,2+2s′(q)

(6.10)
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where s′ = 0, 1.

To complete the study of q-duality we transform the fermionic sums using the relation

[
n+m

m

]

q−1

= q−mn

[
n+m

m

]

q

. (6.11)

We then obtain fermionic sums with a quadratic form matrix of the type discussed in [36].

In particular, we consider ν × ν matrix B defined by its matrix elements

(B)j,k =






2 for j = k = 1
δk,2 for j = 1, 2 ≤ k ≤ ν

δj,2 for k = 1, 2 ≤ j ≤ ν
1
2δj,2δk,2 + δj,k − 1

2δj,k+1 − 1
2δj,k−1 − 1

2δj,νδk,ν otherwise.

(6.12)

We also define

m̃t = (n1, m2, m3, · · · , mν) (6.13)

and the ν − 1-dimensional vector ~v(k)

(~v(k))i = kθ(1 ≤ i ≤ ν − k − 1) + (ν − 1 − i)θ(k > 0)θ(ν − k − 1 < i ≤ ν − 1) (6.14)

where k = 0, 1, · · · , ν − 1. Then, the q-duality transform of the fermionic polynomials

(2.10) can be expressed as

q
L(L+n)

2 F
(ν,n)
r′,s′ (L, q−1) =

∑

Dr′,s′

qΦn(m̃,r′,s′)
ν∏

i=1

[
ni +mi

ni

]

q
(6.15)

where n, Dr′,s′ are given by (2.36), (2.17) and Φn(m̃, r′, s′) is defined as

Φn(m̃, r′, s′) =
1

2
m̃Bm̃ + Ln(m̃, s′) + Cn(r′, s′) (6.16)

2Ln(m̃, s′) = m̃ν − m̃ν−s′ + m̃1δs′,ν−1 + (2m̃1 + m̃2)(n+ δs′,ν−1) (6.17)

4Cn(r′, s′) = s′ − r′ + (1 + 2n)δs′,ν−1. (6.18)

We now let L→ ∞ to obtain the following

lim
L→∞

q
L(L+n)

2 F
(ν,n)
r′,s′ (L, q−1) =

min[r′,s′]∑

k=0

∑

m̃−restrictions[k]

qΦn(m̃,r′,s′)

(q)m̃1
(q)m̃2

×
{
δk,ν−2 + θ(ν − 3 ≥ k)

ν∏

i=3

[
((1 − B)m̃)i − a

(r′)
i − a

(s′)
i

m̃i

]

c,q

}

(6.19)
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where the inhomogeneous vectors a
(s′)
i and a

(r′)
i are given by (2.12) the restrictions[k] on

the summation variables m̃ are

m̃i − m̃ν =
(
~v(s′) + ~v(r′)

)
i−1

(mod 2); i = 2, 3, · · · , ν − k − 1; k 6= ν − 2 (6.20)

m̃ν−j = −2(k − j); j = 0, 1, 2, · · · , k 6= 0. (6.21)

and the symbol
[
A
B

]
c,q

in (6.19) stands for the conventional q-binomial coefficient (i.e. it

vanishes if either A or B takes on negative values). Remarkably, it turns out that the

formula (6.19) can be simplified as

lim
L→∞

q
L(L+n)

2 F
(ν,n)
r′,s′ (L, q−1) =

∑

m̃−restrictions[0]

qΦn(m̃,r′,s′)

(q)m̃1
(q)m̃2

×
ν∏

i=3

[
((1 − B)m̃)i − a

(r′)
i − a

(s′)
i

m̃i

]

q

.

(6.22)

Combining results (6.15), (6.22) and (2.32)–(2.34) one derives the following Fermi/Bose

M(2ν − 1, 4ν) character identities

lim
L→∞

q
L2

2 F
(ν,0)
r′,s′ (L, q−1) = q

(s′−r′)2

2 χ
(2ν−1,4ν)
ν−r′−1,2ν−2s′−1(q)

+ q
(s′+r′+1)2

2 χ
(2ν−1,4ν)
ν+r′,2ν−2s′−1(q)

(6.23)

lim
L→∞

q
L(L−1)

2 F
(ν,−1)
r′,ν−1(L, q−1) = q

(ν−r′−1)(ν−r′−2)
2 χ

(2ν−1,4ν)
ν−r′−1,2 (q)

+ q
(ν+r′)(ν+r′−1)

2 χ
(2ν−1,4ν)
ν+r′,2 (q)

(6.24)

lim
L→∞

q
L(L−1)

2 F
(ν,−1)
r′,s′ (L, q−1) = q

(s′−r′)(s′−r′−1)
2 χ

(2ν−1,4ν)
ν−r′−1,2ν−2s′(q)

+ q
(s′+r′)(s′+r′+1)

2 χ
(2ν−1,4ν)
ν+r′,2ν−2s′(q)

+ q
(s′−r′+1)(s′−r′)

2 χ
(2ν−1,4ν)
ν−r′−1,2ν−2s′−2(q)

+ q
(s′+r′+1)(s′+r′+2)

2 χ
(2ν−1,4ν)
ν+r′,2ν−2s′−2(q), s′ 6= ν − 1.

(6.25)

lim
L→∞

q
L(L+1)

2

(
F

(ν,1)
r′,s′ (L, q−1) + F

(ν,1)
r′,s′−1+δs′,0

(L, q−1)

)

= q
(s′+r′)(s′+r′+1)

2 χ
(2ν−1,4ν)
ν+r′,2ν−2s′(q) + q

(s′−r′)(s′−r′−1)
2 χ

(2ν−1,4ν)
ν−r′−1,2ν−2s′(q).

(6.26)
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We would like to point out that the eqns. (6.23) and (6.24) are consistent with the

results obtained in [36] whenever r′ or s′ is equal to 0. In the general case identi-

ties (6.23) and (6.24) are new. They demonstrate how two quantum groups describing

braiding properties of the conformal blocks ”interact” on the character level. Identi-

ties (6.25) and (6.26) are also new. It is of interest to ascertain whether or not these

new identities can be obtained by means of Bailey Lattice technique [57], [24].

We conclude this section with the following observation. It appears that there exist

RG flows connecting dual regimes of the same model. In particular, it was proposed

in [58] that dual regimes Zν−1 and M(ν, ν + 1) of the ABF model [59] are RG connected

as

Zν−1 + ψ1ψ̄1 + ψ
†
1 ψ̄

†
1 −→M(ν, ν + 1). (6.27)

Recently, the duality M(p, p′) ⇐⇒ M(p′ − p, p′) established in [56], [36] was given the

following RG interpretation in [60](see also [61])

M(p, p′) + φ2,1 →M(p′ − p, p′) (6.28)

It is thus plausible that one can find an appropriate operator which would generate a RG

flow connecting SM(2, 4ν) and M(2ν − 1, 4ν).

7. On the Combinatorial bases

It is well known that each side of a Rogers-Ramanujan type identity can be interpreted

as a generating function for a certain set of restricted partitions [54]. In particular, let

Bν,s′(N) denote the number of partitions of N into parts 6= 2(mod 4) and 6= 0,±(2ν− 1−
2s′)(mod 4ν), and Fν,s′(N) denote the number of partitions of N of the form

N =
∞∑

i=1

ifi (7.1)

where

f1 + f2 ≤ ν − s′ − 1, f2i−1 ≤ 1, f2i + f2i+1 + f2i+2 ≤ ν − 1. (7.2)

Then F
(ν,0)
s′ (q2)

(
B

(ν,0)
s′ (q2)

)
is a generating function for Fν,s′(N)

(
Bν,s′(N)

)
. Moreover,

according to [39], [40], eqn. (1.11) implies

Fν,s′(N) = Bν,s′(N). (7.3)
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By analogy with the analysis given in [62], Melzer [37] proposed a representation theoretical

interpretation of (7.3) which we rephrase as follows.

Let | ∆̂
(2,4ν)
1,2ν−2s′−1 > be the highest-weight state of conformal dimension ∆̂

(2,4ν)
1,2ν−2s′−1 in the

Verma module of NS sector of SM(2, 4ν). Then the set of states

W fm
m · · ·W f2

2 W
f1

1 | ∆̂
(2,4ν)
1,2ν−2s′−1 > (7.4)

form a basis for the irreducible highest-weight representation. Here

Wi =

{
L−i

2
, i ≡ even

G−i
2
, i ≡ odd. (7.5)

Li, Gi are the standard generators of the N = 1 super-Virasoro algebra and fi are the

same as in (7.2).

Motivated by the partition identities due to Burge (theorems 1 and 2 in [44]) we

would like to propose a different basis construction for SM(2, 4ν).

Let us introduce a set of states

G
fm

−m
2
· · ·Gf2

− 2
2

G
f1

− 1
2

| ∆̂
(2,4ν)
1,2ν−2s′−1+n > (7.6)

where n = 0(1) corresponds to the NS(R) sector and fi are defined as

f1 ≤ 2(ν − s′ − n), f2i−n ≡ 0(mod2), fi + fi+1 ≤ 2(ν − 1) (7.7)

with s′ 6= 0 for n = 1.

We conjecture that the above set forms an irreducible basis. Note that our proposal

includes both NS and R-sectors.

To prove the above conjectures, it is sufficient to show that sets (7.4) and (7.6) are linearly

independent. Thus, one is led to the important open question of finding an analog of the

Kac determinant for the restricted partitions.

8. Concluding remarks

We expect that it would be straightforward to apply the techniques and methods de-

veloped here to study general N = 1 SM(p, p′) character identities. Extension to other

SU(2) cosets would call for higher spin analogs of q-trinomial coefficients whose properties
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are at present poorly understood. It is important to find partition theoretical and con-

figuration sum interpretations of (2.32)–(2.34). We believe that this interpretation would

provide important clues leading to Boltzman weights for new integrable models which

would have SM(2, 4ν) and M(2ν − 1, 4ν) as dual regimes. It would also be interesting to

find a q-trinomial generalization of Bailey’s lemma. We hope to address these challenging

questions in our future publications.
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Appendix A. Proofs of Identities for q-trinomial Coefficients

In this appendix we prove the identities (4.1), (4.5), (4.9) of q-trinomial coefficients

and the limiting formulas (2.29), (5.35). We follow the notation of [45]–[47].

The proof of (4.1) is practically the same as that of (2.3) of [47]. We first use (2.22) to

rewrite (4.1) as

(
L,A− n; q

A

)

2

= qL−A

(
L− 1, A− 1 − n; q

A− 1

)

2

+ qL+A−n

(
m− 1, A− n+ 1; q

A+ 1

)

2

+

(
L− 1, A− n; q

A

)

2

+ qL−1−n(1 − qL−1)

(
L− 2, A− n; q

A

)

2

.

(A.1)

Then, recalling the definitions (2.21)–(2.23) and (1.2) one can easily derive

qL−Atn(L− 1, A− 1; j) =
qL−A−j − qL

1 − qL
tn(L,A; j) (A.2)

qL+A−ntn(L− 1, A+ 1; j − 1) =
qL−j − qL

1 − qL
tn(L,A; j) (A.3)

tn(L− 1, A; j) =
1 − qL−2j−A

1 − qL
tn(L,A; j) (A.4)

qL−n−1(1 − qL−1)tn(L− 2, A; j − 1) =
qL−2j−A

1 − qL
(1 − qj)(1 − q(j+A))tn(L,A; j). (A.5)
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Then it is clear that

qL−Atn(L− 1, A− 1; j) + qL+A−ntn(L− 1.A+ 1; j − 1)

+ tn(L− 1, A; j) + qL−n−1(1 − qL−1)tn(L− 2, A; j − 1)

=

(
qL−A−j − qL

1 − qL
+
qL−j − qL

1 − qL

+
1 − qL−2j−A

1 − qL
+
qL−2j−A(1 − qj)(1 − qj+A)

1 − qL

)
tn(L,A; j)

= tn(L,A; j)

(A.6)

from which (A.1) follows by summing over j.

We now prove (4.5). To this end we note that both sides of (4.5) satisfy the same

equation (4.1) with n = 1. To conclude the proof one needs to verify that (4.5) holds true

for L = 0, 1. This can be easily done by the direct inspection.

Let us now consider (4.9). This identity can be obtained from the slightly more general

identity

Tn−1(L,A; q
1
2 ) − Tn−1(L,A− 2; q

1
2 )

= q
L+A

2 Tn(L,A; q
1
2 ) − q

L+2−A
2 Tn(L,A− 2; q

1
2 )

(A.7)

by setting n = 1 and letting A→ −A. We first use (2.22) to rewrite (A.7) as

(
L,A− n; q

A

)

2

− qA

(
L,A− n+ 1; q

A

)

2

= q1+n−A

[(
L,A− 2 − n; q

A− 2

)

2

−
(
L,A− 1 − n; q

A− 2

)

2

]
.

(A.8)

Then, noting the identities

tn(L,A; j)− qAtn−1(L,A; j) =
qj(j+A−n)(q)L

(q)j(q)j+A−1(q)L−2j−A
(A.9)

and

q1+n−A

[
tn(L,A− 2; j + 1) − tn−1(L,A− 2; j + 1)

]

=
qj(j+A−n)(q)L

(q)j(q)j+A−1(q)L−2j−A

(A.10)

we see that

tn(L,A; j)− qAtn−1(L,A; j) = q1+n−A

[
tn(L,A−2; j+1)− tn−1(L,A−2; j+1)

]
. (A.11)
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Since

tn(L,A− 2; 0) − tn−1(L,A− 2; 0) = 0, (A.12)

the desired result (A.8) follows by summing (A.11) over j.

To prove the limiting formula (2.29) we slightly extend the analysis given in [45]. Let

us use the elementary relation

(q−1)m = (−1)mq
−m(m+1)

2 (q)m (A.13)

in the definitions (2.21)–(2.22) to write

Tn(L,A; q
1
2 ) =

∑

l≥0

q2l2−nl(q)L

(q) (L−A−2l)
2

(q) (L+A−2l)
2

(q)2l
for L− A even

= q
(1−n)

2

∑

l≥0

q2l2+(2−n)l(q)L

(q) (L−A−2l−1)
2

(q) (L+A−2l−1)
2

(q)2l+1
for L− A odd.

(A.14)

It is now trivial to take the limit

lim
L→∞

Tn(L,A; q
1
2 ) =

1

(q)∞

∑

j≥0,even

q
j(j−n)

2

(q)j
for L− A even

=
1

(q)∞

∑

j≥0 odd

q
j(j−n)

2

(q)j
for L−A odd

(A.15)

from which, using the identity (2.20) of [54]
∞∑

j=0

tjq
j(j−1)

2

(q)j
=

∞∏

j=0

(1 + tqj) (A.16)

with t = ±q (1−n)
2 , the desired result (2.29) is obtained.

Finally, let us prove (5.35). Recalling (5.33) we can express lhs of identity (5.35) as

g(j, q) + g(j + 1, q) = lim
L→∞

G(L, j, q); j ∈ Z, j ≥ 0 (A.17)

where

G(L, j, q) =

L∑

l=0

(−1)l ×
{[
T−1(l, j + 2) + T−1(l, j) + 2T−1(l, j + 1)

]
−

[
T−1(l, j + 1) + T−1(l, j − 1) + 2T−1(l, j)

]}
.

(A.18)

Taking (4.5) into account, we find

G(L, j, q) = (−1)L+1
[
T1(L+ 1, j) − T1(L+ 1, j + 1)

]
− δj,0. (A.19)

Combining (A.17), (A.19) and (2.30) we obtain equation

g(j, q) + g(j + 1, q) = lim
L→∞

G(L, j, q) = −δj,0 (A.20)

which proves (5.35).
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