225 research outputs found

    The functionality of the anatomy in the physical education career

    Get PDF
    Históricamente, la enseñanza de la anatomía dentro del ámbito de la Educación Física no ha focalizado sus contenidos en la práctica misma de esta carrera, no ha estado contextualizada en sus problemáticas; por lo tanto, intentaremos demostrar que la temática que planteamos puede responder a las necesidades de una Educación Física dinámica. Para ello, es de vital importancia resaltar el aporte funcional que se adapta de una forma más real a nuestra práctica docente. La anatomía funcional que se propone trasciende la descripción estática de las diferentes regiones del cuerpo humano, teniendo una visión más amplia de dicho cuerpo en movimiento. A partir de esta idea, se trata de ver a los contenidos de la asignatura no como rígidos o invariables sino utilizándolos para reflexionar y crear espacios de discusión sobre nuestra práctica y preguntarnos qué nos aporta una anatomía reducida solo a sus contenidos descriptivos. La anatomía, en este aspecto, debe partir del propio campo y es aquí donde surgen nuestras inquietudes en torno a enfocarla desde sus funciones, partiendo del movimiento y no desde el preparado cadavérico donde se observa la carencia de una dinámica real para nuestro campo.Historically, the teaching of anatomy within the area of Physical Education has not focused its content on the practice of the course of studies; it has not been contextualized in its difficulties. This is an attempt to show that the subject that is offered to us could answer the needs of a dynamic Physical Education, and because of this, it is important to highlight the functional contribution which adapts in a more realistic sense to our teaching practice. The functional anatomy that is proposed goes beyond the static description of the different regions of the human body, having a wider and more dynamic vision of the body in motion. From this idea, we try to see the contents of the subject not as something rigid or invariable, but to use them to think and to create spaces of discussion on our practice and to wonder, how a descriptive anatomy reduced to only its descriptive contents may helps us . The anatomy, in this aspect, must begin from its own field and here lies our main concern as regards focusing on its functions, starting from the movement and not from the dead bodies where we observe the lack of dynamics.Departamento de Educación Físic

    Dissecting EPPIN protease inhibitor domains in sperm motility and fertilizing ability: Repercussions for male contraceptive development

    Get PDF
    EPPIN (epididymal protease inhibitor) is a mammalian conserved sperm-binding protein displaying an N-terminal WFDC (whey-acidic protein four-disulfide core) and a C-terminal Kunitz protease inhibitor domains. EPPIN plays a key role in regulating sperm motility after ejaculation via interaction with the seminal plasma protein SEMG1 (semenogelin-1). EPPIN ligands targeting the SEMG1 binding site in the Kunitz domain are under development as male contraceptive drugs. Nevertheless, the relative contributions of EPPIN WFDC and Kunitz domains to sperm function remain obscure. Here, we evaluated the effects of antibodies targeting specific epitopes in EPPIN's WFDC (Q20E antibody, Gln20-Glu39 epitope) and Kunitz (S21C and F21C antibodies, Ser103-Cys123 and Phe90-C110 epitopes, respectively) domains on mouse sperm motility and fertilizing ability. Computer-assisted sperm analysis showed that sperm co-incubation with S21C antibody (but not F21C antibody) lowered progressive and hyperactivated motilities and impaired kinematic parameters describing progressive (straight-line velocity; VSL, average path velocity; VAP and straightness; STR) and vigorous sperm movements (curvilinear velocity; VCL, amplitude of lateral head movement; ALH, and linearity; LIN) compared with control. Conversely, Q20E antibody-induced milder inhibition of progressive motility and kinematic parameters (VAP, VCL and ALH). Sperm co-incubation with S21C or Q20E antibodies affected in vitro fertilization as revealed by reduced cleavage rates, albeit without changes in capacitation-induced tyrosine phosphorylation. In conclusion, we show that targeting specific epitopes in EPPIN Kunitz and WFDC domains inhibits sperm motility and capacitation-associated events, which decrease their fertilizing ability; nevertheless, similar observations in vivo remain to be demonstrated. Simultaneously targeting residues in S21C and Q20E epitopes is a promising approach for the rational design of EPPIN-based ligands with spermostatic activity.Fil: Silva, Alan A. S.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Raimundo, Tamiris R. F.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Mariani, Noemia A. P.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Kushima, Hélio. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Avellar, Maria Christina W.. Universidade Federal de Sao Paulo; BrasilFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Paula Lopes, Fabíola F.. Universidade Federal de Sao Paulo; BrasilFil: Moura, Marcelo T.. Universidade Federal de Sao Paulo; BrasilFil: Silva, Erick J. R.. Universidade Estadual Paulista Julio de Mesquita Filho; Brasi

    CFTR/ENaC-dependent regulation of membrane potential during human sperm capacitation is initiated by bicarbonate uptake through NBC

    Get PDF
    To fertilize an egg, sperm must reside in the female reproductive tract to undergo several maturational changes that are collectively referred to as capacitation. From a molecular point of view, the HCO3-dependent activation of the atypical soluble adenylyl cyclase (ADCY10) is one of the first events that occurs during capacitation and leads to the subsequent cAMP-dependent activation of protein kinase A (PKA). Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. We previously reported that PKA activation is necessary for CFTR (cystic fibrosis transmembrane conductance regulator channel) activity and for the modulation of membrane potential (Em). However, the main HCO3 transporters involved in the initial transport and the PKA-dependent Em changes are not well known nor characterized. Here, we analyzed how the activity of CFTR regulates Em during capacitation and examined its relationship with an electrogenic Na/HCO3 cotransporter (NBC) and epithelial Na channels (ENaCs). We observed that inhibition of both CFTR and NBC decreased HCO3 influx, resulting in lower PKA activity, and that events downstream of the cAMP activation of PKA are essential for the regulation of Em. Addition of a permeable cAMP analog partially rescued the inhibitory effects caused by these inhibitors. HCO3 also produced a rapid membrane hyperpolarization mediated by ENaC channels, which contribute to the regulation of Em during capacitation. Altogether, we demonstrate for the first time, that NBC cotransporters and ENaC channels are essential in the CFTR-dependent activation of the cAMP/PKA signaling pathway and Em regulation during human sperm capacitation.Fil: Puga Molina, Lis del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Pinto, Nicolás Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Torres, Nicolás I.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: González Cota, Ana, L.. University of Washington; Estados UnidosFil: Luque, Guillermina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Balestrini, Paula Ania. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Romarowski, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Krapf, Dario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Santi, Celia M.. University of Washington; Estados UnidosFil: Treviño, Claudia L.. Universidad Nacional Autónoma de México; MéxicoFil: Darszon, Alberto. Universidad Nacional Autónoma de México; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    Transient Sperm Starvation Improves the Outcome of Assisted Reproductive Technologies

    Get PDF
    To become fertile, mammalian sperm must undergo a series of biochemical and physiological changes known as capacitation. These changes involve crosstalk between metabolic and signaling pathways and can be recapitulated in vitro. In this work, sperm were incubated in the absence of exogenous nutrients (starved) until they were no longer able to move. Once immotile, energy substrates were added back to the media and sperm motility was rescued. Following rescue, a significantly higher percentage of starved sperm attained hyperactivated motility and displayed increased ability to fertilize in vitro when compared with sperm persistently incubated in standard capacitation media. Remarkably, the effects of this treatment continue beyond fertilization as starved and rescued sperm promoted higher rates of embryo development, and once transferred to pseudo-pregnant females, blastocysts derived from treated sperm produced significantly more pups. In addition, the starvation and rescue protocol increased fertilization and embryo development rates in sperm from a severely subfertile mouse model, and when combined with temporal increase in Ca2+ ion levels, this methodology significantly improved fertilization and embryo development rates in sperm of sterile CatSper1 KO mice model. Intracytoplasmic sperm injection (ICSI) does not work in the agriculturally relevant bovine system. Here, we show that transient nutrient starvation of bovine sperm significantly enhanced ICSI success in this species. These data reveal that the conditions under which sperm are treated impact postfertilization development and suggest that this “starvation and rescue method” can be used to improve assisted reproductive technologies (ARTs) in other mammalian species, including humans.Fil: Navarrete, Felipe A.. University of Massachussets; Estados UnidosFil: Aguila, Luis. University of Massachussets; Estados UnidosFil: Martin Hidalgo, David. University of Massachussets; Estados Unidos. Universidad de Extremadura ; EspañaFil: Tourzani, Darya A.. University of Massachussets; Estados UnidosFil: Luque, Guillermina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Ardestani, Goli. University of Massachussets; Estados UnidosFil: Garcia Vazquez, Francisco A.. Universidad de Murcia; EspañaFil: Levin, Lonny R.. Cornell University; Estados UnidosFil: Buck, Jochen. Cornell University; Estados UnidosFil: Darszon, Alberto. Universidad Nacional Autónoma de México. Instituto de Biología; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mager, Jesse. University of Massachussets; Estados UnidosFil: Fissore, Rafael A.. University of Massachussets; Estados UnidosFil: Salicioni, Ana M.. University of Massachussets; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Visconti, Pablo E.. University of Massachussets; Estados Unido

    Molecular Basis of Human Sperm Capacitation

    Get PDF
    In the early 1950s, Austin and Chang independently described the changes that are required for the sperm to fertilize oocytes in vivo. These changes were originally grouped under name of “capacitation” and were the first step in the development of in vitro fertilization (IVF) in humans. Following these initial and fundamental findings, a remarkable number of observations led to characterization of the molecular steps behind this process. The discovery of certain sperm-specific molecules and the possibility to record ion currents through patch-clamp approaches helped to integrate the initial biochemical observation with the activity of ion channels. This is of particular importance in the male gamete due to the fact that sperm are transcriptionally inactive. Therefore, sperm must control all these changes that occur during their transit through the male and female reproductive tracts by complex signaling cascades that include post-translational modifications. This review is focused on the principal molecular mechanisms that govern human sperm capacitation with particular emphasis on comparing all the reported pieces of evidence with the mouse model

    Effects of the Insemination of Hydrogen Peroxide-Treated Epididymal Mouse Spermatozoa on γH2AX Repair and Embryo Development

    Get PDF
    BACKGROUND: Cryopreservation of human semen for assisted reproduction is complicated by cryodamage to spermatozoa caused by excessive reactive oxygen species (ROS) generation. METHODS AND FINDINGS: We used exogenous ROS (H(2)O(2)) to simulate cryopreservation and examined DNA damage repair in embryos fertilized with sperm with H(2)O(2)-induced DNA damage. Sperm samples were collected from epididymis of adult male KM mice and treated with capacitation medium (containing 0, 0.1, 0.5 and 1 mM H(2)O(2)) or cryopreservation. The model of DNA-damaged sperm was based on sperm motility, viability and the expression of γH2AX, the DNA damage-repair marker. We examined fertility rate, development, cell cleavage, and γH2AX level in embryos fertilized with DNA-damaged sperm. Cryopreservation and 1-mM H(2)O(2) treatment produced similar DNA damage. Most of the one- and two-cell embryos fertilized with DNA-damaged sperm showed a delay in cleavage before the blastocyst stage. Immunocytochemistry revealed γH2AX in the one- and four-cell embryos. CONCLUSIONS: γH2AX may be involved in repair of preimplantation embryos fertilized with oxygen-stressed spermatozoa

    Hypercholesterolemia Impaired Sperm Functionality in Rabbits

    Get PDF
    Hypercholesterolemia represents a high risk factor for frequent diseases and it has also been associated with poor semen quality that may lead to male infertility. The aim of this study was to analyze semen and sperm function in diet-induced hypercholesterolemic rabbits. Twelve adult White New Zealand male rabbits were fed ad libitum a control diet or a diet supplemented with 0.05% cholesterol. Rabbits under cholesterol-enriched diet significantly increased total cholesterol level in the serum. Semen examination revealed a significant reduction in semen volume and sperm motility in hypercholesterolemic rabbits (HCR). Sperm cell morphology was seriously affected, displaying primarily a “folded head”-head fold along the major axe-, and the presence of cytoplasmic droplet on sperm flagellum. Cholesterol was particularly increased in acrosomal region when detected by filipin probe. The rise in cholesterol concentration in sperm cells was determined quantitatively by Gas chromatographic-mass spectrometric analyses. We also found a reduction of protein tyrosine phosphorylation in sperm incubated under capacitating conditions from HCR. Interestingly, the addition of Protein Kinase A pathway activators -dibutyryl-cyclic AMP and iso-butylmethylxanthine- to the medium restored sperm capacitation. Finally, it was also reported a significant decrease in the percentage of reacted sperm in the presence of progesterone. In conclusion, our data showed that diet-induced hypercholesterolemia adversely affects semen quality and sperm motility, capacitation and acrosomal reaction in rabbits; probably due to an increase in cellular cholesterol content that alters membrane related events

    The Tissue-Specific Rep8/UBXD6 Tethers p97 to the Endoplasmic Reticulum Membrane for Degradation of Misfolded Proteins

    Get PDF
    The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation

    Mutation in Archain 1, a Subunit of COPI Coatomer Complex, Causes Diluted Coat Color and Purkinje Cell Degeneration

    Get PDF
    Intracellular trafficking is critical for delivering molecules and organelles to their proper destinations to carry out normal cellular functions. Disruption of intracellular trafficking has been implicated in the pathogenesis of various neurodegenerative disorders. In addition, a number of genes involved in vesicle/organelle trafficking are also essential for pigmentation, and loss of those genes is often associated with mouse coat-color dilution and human hypopigmentary disorders. Hence, we postulated that screening for mouse mutants with both neurological defects and coat-color dilution will help identify additional factors associated with intracellular trafficking in neuronal cells. In this study, we characterized a mouse mutant with a unique N-ethyl-N-nitrosourea (ENU)–induced mutation, named nur17. nur17 mutant mice exhibit both coat-color dilution and ataxia due to Purkinje cell degeneration in the cerebellum. By positional cloning, we identified that the nur17 mouse carries a T-to-C missense mutation in archain 1 (Arcn1) gene which encodes the δ subunit of the coat protein I (COPI) complex required for intracellular trafficking. Consistent with this function, we found that intracellular trafficking is disrupted in nur17 melanocytes. Moreover, the nur17 mutation leads to common characteristics of neurodegenerative disorders such as abnormal protein accumulation, ER stress, and neurofibrillary tangles. Our study documents for the first time the physiological consequences of the impairment of the ARCN1 function in the whole animal and demonstrates a direct association between ARCN1 and neurodegeneration
    corecore