2,583 research outputs found

    Female teat size is a reliable indicator of annual breeding success in European badgers: Genetic validation

    No full text
    Assessing which females have bred successfully is a central requirement in many ecological field studies, providing an estimate of the effective female population size. Researchers have applied teat measurements previously to assess whether females, in a variety of mammalian species, have bred; however, this technique has not been validated genetically. Furthermore, several analytical techniques are available to classify individuals, but their misclassification rates have not been compared. We used 22 microsatellite loci to assign maternity, with 95% confidence, within a high-density population of European badgers Meles meles, as plural and subterranean breeding means that maternity cannot be inferred from behavioural observations. The teat lengths and diameters of 136 females, measured May–July 1994–2005, from social groups in which all offspring were assigned a mother, were reliable indicators of recent breeding success. A Generalised Linear Mixed Model (GLMM) classified both breeding and non-breeding females with lower error rates than discriminant analyses and crude teat-size criteria. The GLMM model logit probability = −20 + 1.8 month + 1.6 mean teat length + 1.0 mean teat diameter can be applied quickly in the field to assess the probability with which a female badger should be assigned maternity. This is a low-cost measure which, after validation, could be used in other badger or mammalian populations to assess the breeding success of females. This may be a particularly useful welfare tool for veterinary practitioners, especially during badger culls

    Lip licking behavior in captive Malayan tapirs (Tapirus indicus): manifestation of a stereotypic or stress related response?

    Get PDF
    Malayan tapirs are highly endangered and wild populations are fast declining. Thus, captive breeding programs in zoos and governmental breeding centers are the most promising conservation strategy for this species. Despite being common, lip licking, a type of oral behavior, has received little attention in the past, and impacts on the welfare of captive Malayan tapirs have not been quantified. Here, we videoed the behavior of seven captive tapirs for eight hours per diem (0900 - 1700) using instantaneous sampling for six months to investigate which stressors in captivity (enclosure type, enclosure size, humidity, visitors) cause increased lip licking behavior. We show that lip licking is induced by unsuitable humidity whereby dry humidity below 65% caused a significant increase in this behavior. We found lip licking behavior in tapirs is not a stereotypic behavior, but it may indicate a stress response towards heat. Hence, we suggest that breeding centers re-evaluate their exhibit design and behavioral enrichments, implementing simple design changes that would help to reduce lip licking and consequently increase the welfare of captive Malayan tapirs

    Variations in Badger ( Meles meles

    Get PDF
    Maintaining homeothermy is essential for mammals, but has considerable energetic costs. In this study, we monitored the internal conditions of setts within five European badger (Meles meles) social groups during the cub-rearing season, that is, February to July, in 2004. Sett temperature showed substantial and significant variation over this period, while relative humidity remained stable throughout. Microclimate was least stable during the period for which cubs remain entirely below ground between February and April; however here the instrumented main sett demonstrated a much warmer and more stable temperature regime than did nearby subsidiary outliers. We thus postulate that the energy budget of reproducing females could be affected by even small temperature fluctuations, militating for optimal sett choice. For comparison we also report microclimatic data from two artificial setts and found them to be markedly inferior in terms of thermal insulative properties, suggesting that man-made setts may need more careful consideration in both thermal and spatial setts network in each territory to adequately compensate the loss (e.g., destruction due to development) of a natural sett, especially as a breeding den

    meles) Sett Microclimate: Differential Cub Survival between Main and Subsidiary Setts, with Implications for Artificial Sett Construction

    Get PDF
    Maintaining homeothermy is essential for mammals, but has considerable energetic costs. In this study, we monitored the internal conditions of setts within five European badger (Meles meles) social groups during the cub-rearing season, that is, February to July, in 2004. Sett temperature showed substantial and significant variation over this period, while relative humidity remained stable throughout. Microclimate was least stable during the period for which cubs remain entirely below ground between February and April; however here the instrumented main sett demonstrated a much warmer and more stable temperature regime than did nearby subsidiary outliers. We thus postulate that the energy budget of reproducing females could be affected by even small temperature fluctuations, militating for optimal sett choice. For comparison we also report microclimatic data from two artificial setts and found them to be markedly inferior in terms of thermal insulative properties, suggesting that man-made setts may need more careful consideration in both thermal and spatial setts network in each territory to adequately compensate the loss (e.g., destruction due to development) of a natural sett, especially as a breeding den

    Heterozygosity-fitness correlations in a wild mammal population: accounting for parental and environmental effects

    Get PDF
    HFCs (heterozygosity–fitness correlations) measure the direct relationship between an individual's genetic diversity and fitness. The effects of parental heterozygosity and the environment on HFCs are currently under-researched. We investigated these in a high-density U.K. population of European badgers (Meles meles), using a multimodel capture–mark–recapture framework and 35 microsatellite loci. We detected interannual variation in first-year, but not adult, survival probability. Adult females had higher annual survival probabilities than adult males. Cubs with more heterozygous fathers had higher first-year survival, but only in wetter summers; there was no relationship with individual or maternal heterozygosity. Moist soil conditions enhance badger food supply (earthworms), improving survival. In dryer years, higher indiscriminate mortality rates appear to mask differential heterozygosity-related survival effects. This paternal interaction was significant in the most supported model; however, the model-averaged estimate had a relative importance of 0.50 and overlapped zero slightly. First-year survival probabilities were not correlated with the inbreeding coefficient (f); however, small sample sizes limited the power to detect inbreeding depression. Correlations between individual heterozygosity and inbreeding were weak, in line with published meta-analyses showing that HFCs tend to be weak. We found support for general rather than local heterozygosity effects on first-year survival probability, and g2 indicated that our markers had power to detect inbreeding. We emphasize the importance of assessing how environmental stressors can influence the magnitude and direction of HFCs and of considering how parental genetic diversity can affect fitness-related traits, which could play an important role in the evolution of mate choice

    A New Approach to Searching for Dark Matter Signals in Fermi-LAT Gamma Rays

    Full text link
    Several cosmic ray experiments have measured excesses in electrons and positrons, relative to standard backgrounds, for energies from ~ 10 GeV - 1 TeV. These excesses could be due to new astrophysical sources, but an explanation in which the electrons and positrons are dark matter annihilation or decay products is also consistent. Fortunately, the Fermi-LAT diffuse gamma ray measurements can further test these models, since the electrons and positrons produce gamma rays in their interactions in the interstellar medium. Although the dark matter gamma ray signal consistent with the local electron and positron measurements should be quite large, as we review, there are substantial uncertainties in the modeling of diffuse backgrounds and, additionally, experimental uncertainties that make it difficult to claim a dark matter discovery. In this paper, we introduce an alternative method for understanding the diffuse gamma ray spectrum in which we take the intensity ratio in each energy bin of two different regions of the sky, thereby canceling common systematic uncertainties. For many spectra, this ratio fits well to a power law with a single break in energy. The two measured exponent indices are a robust discriminant between candidate models, and we demonstrate that dark matter annihilation scenarios can predict index values that require "extreme" parameters for background-only explanations.Comment: v1: 11 pages, 7 figures, 1 table, revtex4; v2: 13 pages, 8 figures, 1 table, revtex4, Figure 4 added, minor additions made to text, references added, conclusions unchanged, published versio
    corecore