544 research outputs found

    Approximate probabilistic verification of hybrid systems

    Full text link
    Hybrid systems whose mode dynamics are governed by non-linear ordinary differential equations (ODEs) are often a natural model for biological processes. However such models are difficult to analyze. To address this, we develop a probabilistic analysis method by approximating the mode transitions as stochastic events. We assume that the probability of making a mode transition is proportional to the measure of the set of pairs of time points and value states at which the mode transition is enabled. To ensure a sound mathematical basis, we impose a natural continuity property on the non-linear ODEs. We also assume that the states of the system are observed at discrete time points but that the mode transitions may take place at any time between two successive discrete time points. This leads to a discrete time Markov chain as a probabilistic approximation of the hybrid system. We then show that for BLTL (bounded linear time temporal logic) specifications the hybrid system meets a specification iff its Markov chain approximation meets the same specification with probability 11. Based on this, we formulate a sequential hypothesis testing procedure for verifying -approximately- that the Markov chain meets a BLTL specification with high probability. Our case studies on cardiac cell dynamics and the circadian rhythm indicate that our scheme can be applied in a number of realistic settings

    Preliminary evidence of reductive stress in human cytotoxic T-cells following exercise

    Get PDF
    This study investigated immunophenotypic differences in intracellular thiol redox state of peripheral blood mononuclear cells (PBMCs) isolated from trained (TR, n=9, mean {plus minus} SD: age 28 {plus minus} 5 years; BMI 23.2 {plus minus} 2.6 kg·m2; VO2max 56.9 {plus minus} 6.1 ml·kg-1·min-1) and recreationally active (RA, n=11, mean {plus minus} SD: age 27 {plus minus} 6 years; BMI 24.2 {plus minus} 3.7 kg·m2; VO2max 45.1 {plus minus} 6.4 ml·kg-1·min-1) participants before and after a maximal aerobic exercise tolerance test. Blood samples were taken before (PRE), during (sample acquired at 70% HRmax), immediately (POST+0) and 15 minutes post-exercise (POST+15). PBMCs were isolated and reduced thiol analysis (fluorescein-5 maleimide (F5M)) by immunophenotype (CD3+, CD4+ and CD8+) was performed using flow cytometry. A significant increase in cellular F5M fluorescence was observed in CD3+ T-cells at POST+0, with changes driven to a greater extent by CD8+ T-cells (fold change in both groups CD4: +2.3, CD8: +2.8; p<0.05). Further analysis revealed a population of highly reduced CD8+ T-cells (CD8+T-reduced+) that significantly increased from PRE to POST+0 in RA participants only (RA: +272 cell/µL, p<0.05). To further understand these results, CD8+T-reduced+ and CD8+T-reduced- cells were analysed for immunophenotype in response to the same exercise protocol (n=6, mean {plus minus} SD: age 24 {plus minus} 5 years; BMI 25.7 {plus minus} 4.1 kg·m-2; VO2max 41.33 {plus minus} 7.63 ml·kg-1·min-1). CD8+T-reduced+ had significantly less lymphoid homing potential (CCR7) POST+0 compared to PRE. This study is the first to demonstrate that lymphocyte populations become more reductive in response to acute exercise

    Hardness and approximation for the geodetic set problem in some graph classes

    Full text link
    In this paper, we study the computational complexity of finding the \emph{geodetic number} of graphs. A set of vertices SS of a graph GG is a \emph{geodetic set} if any vertex of GG lies in some shortest path between some pair of vertices from SS. The \textsc{Minimum Geodetic Set (MGS)} problem is to find a geodetic set with minimum cardinality. In this paper, we prove that solving the \textsc{MGS} problem is NP-hard on planar graphs with a maximum degree six and line graphs. We also show that unless P=NPP=NP, there is no polynomial time algorithm to solve the \textsc{MGS} problem with sublogarithmic approximation factor (in terms of the number of vertices) even on graphs with diameter 22. On the positive side, we give an O(n3logn)O\left(\sqrt[3]{n}\log n\right)-approximation algorithm for the \textsc{MGS} problem on general graphs of order nn. We also give a 33-approximation algorithm for the \textsc{MGS} problem on the family of solid grid graphs which is a subclass of planar graphs

    Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model

    Get PDF
    Introduction. The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. Methods. A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO§ssub§2§esub§), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. Results: Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. Conclusions: We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS. © 2013 Rojas et al.; licensee BioMed Central Ltd

    LEMUR: Large European Module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission

    Get PDF
    Understanding the solar outer atmosphere requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1" and 0.3"), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 17 and 127 nm. The LEMUR slit covers 280" on the Sun with 0.14" per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km/s or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.Comment: 35 pages, 14 figures. To appear on Experimental Astronom

    Comparison of outcomes following a cytological or histological diagnosis of malignant mesothelioma

    Get PDF
    Background: Survival with the epithelioid subtype of malignant mesothelioma (MM) is longer than the biphasic or sarcomatoid subtypes. There is concern that cytology-diagnosed epithelioid MM may underdiagnose the biphasic subtype. This study examines survival differences between patients with epithelioid MM diagnosed by cytology only and other subtypes diagnosed by histology. Methods: Demographics, diagnosis method, MM subtype and survival were extracted from the Western Australia (WA) Mesothelioma Registry, which records details of all MM cases occurring in WA. Results: A total of 2024 MM cases were identified over 42 years. One thousand seven hundred forty-four (86.2%) were male, median (IQR) age was 68.6 (60.4–77.0) years. A total of 1212 (59.9%) cases were identified as epithelioid subtype of which 499 (41.2%) were diagnosed using fluid cytology only. Those with a cytology-only diagnosis were older than the histology group (median 70.2 vs 67.6 years, P<0.001), but median survival was similar (cytology 10.6 (5.5–19.2) vs histology 11.1 (4.8–19.8) months, P=0.727) and Cox regression modelling adjusting for age, sex, site and time since first exposure showed no difference in survival between the different diagnostic approaches. Conclusions: Survival of cytologically and histologically diagnosed epithelioid MM cases does not differ. A diagnostic tap should be considered adequate to diagnose epithelioid MM without need for further invasive testing

    Fluorescence activated cell sorting followed by small RNA sequencing reveals stable microRNA expression during cell cycle progression.

    Get PDF
    BACKGROUND: Previously, drug-based synchronization procedures were used for characterizing the cell cycle dependent transcriptional program. However, these synchronization methods result in growth imbalance and alteration of the cell cycle machinery. DNA content-based fluorescence activated cell sorting (FACS) is able to sort the different cell cycle phases without perturbing the cell cycle. MiRNAs are key transcriptional regulators of the cell cycle, however, their expression dynamics during cell cycle has not been explored. METHODS: Following an optimized FACS, a complex initiative of high throughput platforms (microarray, Taqman Low Density Array, small RNA sequencing) were performed to study gene and miRNA expression profiles of cell cycle sorted human cells originating from different tissues. Validation of high throughput data was performed using quantitative real time PCR. Protein expression was detected by Western blot. Complex statistics and pathway analysis were also applied. RESULTS: Beyond confirming the previously described cell cycle transcriptional program, cell cycle dependently expressed genes showed a higher expression independently from the cell cycle phase and a lower amplitude of dynamic changes in cancer cells as compared to untransformed fibroblasts. Contrary to mRNA changes, miRNA expression was stable throughout the cell cycle. CONCLUSIONS: Cell cycle sorting is a synchronization-free method for the proper analysis of cell cycle dynamics. Altered dynamic expression of universal cell cycle genes in cancer cells reflects the transformed cell cycle machinery. Stable miRNA expression during cell cycle progression may suggest that dynamical miRNA-dependent regulation may be of less importance in short term regulations during the cell cycle
    corecore