1,960 research outputs found

    Ultrasonic Characterization of Porosity in Composites

    Get PDF
    The determination of levels of porosity is important in the engineering uses of graphite fiber/polymer matrix composites, since the interlaminar shear strength can be greatly reduced by excessive porosity [1]. Research in making nondestructive evaluations using ultrasonics as the probing energy has taken many directions. Hsu [2] has successfully modeled the frequency dependent attenuation to predict porosity levels in composites. Kline [3] has extended the work of Hashsin and Rosen [4] to determine the porosity and fiber volume fraction of composites by solving for the elastic coefficients of the composite structure. The propagation of leaky Lamb waves [5] has also been used to model porosity levels

    The Dawn of Open Access to Phylogenetic Data

    Get PDF
    The scientific enterprise depends critically on the preservation of and open access to published data. This basic tenet applies acutely to phylogenies (estimates of evolutionary relationships among species). Increasingly, phylogenies are estimated from increasingly large, genome-scale datasets using increasingly complex statistical methods that require increasing levels of expertise and computational investment. Moreover, the resulting phylogenetic data provide an explicit historical perspective that critically informs research in a vast and growing number of scientific disciplines. One such use is the study of changes in rates of lineage diversification (speciation - extinction) through time. As part of a meta-analysis in this area, we sought to collect phylogenetic data (comprising nucleotide sequence alignment and tree files) from 217 studies published in 46 journals over a 13-year period. We document our attempts to procure those data (from online archives and by direct request to corresponding authors), and report results of analyses (using Bayesian logistic regression) to assess the impact of various factors on the success of our efforts. Overall, complete phylogenetic data for ~60% of these studies are effectively lost to science. Our study indicates that phylogenetic data are more likely to be deposited in online archives and/or shared upon request when: (1) the publishing journal has a strong data-sharing policy; (2) the publishing journal has a higher impact factor, and; (3) the data are requested from faculty rather than students. Although the situation appears dire, our analyses suggest that it is far from hopeless: recent initiatives by the scientific community -- including policy changes by journals and funding agencies -- are improving the state of affairs

    On Semiclassical Limits of String States

    Get PDF
    We explore the relation between classical and quantum states in both open and closed (super)strings discussing the relevance of coherent states as a semiclassical approximation. For the closed string sector a gauge-fixing of the residual world-sheet rigid translation symmetry of the light-cone gauge is needed for the construction to be possible. The circular target-space loop example is worked out explicitly.Comment: 12 page

    Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes

    Get PDF
    The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200–300 million years[superscript 1, 2, 3]. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes’ genes owing to genetic decay[superscript 4, 5]. This evolutionary decay was driven by a series of five ‘stratification’ events. Each event suppressed X–Y crossing over within a chromosome segment or ‘stratum’, incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over[superscript 2, 6]. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome[superscript 7, 8, 9, 10], remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1–4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection

    Does oral sodium bicarbonate therapy improve function and quality of life in older patients with chronic kidney disease and low-grade acidosis (the BiCARB trial)? Study protocol for a randomized controlled trial

    Get PDF
    Date of acceptance: 01/07/2015 © 2015 Witham et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements UK NIHR HTA grant 10/71/01. We acknowledge the financial support of NHS Research Scotland in conducting this trial.Peer reviewedPublisher PD

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances

    Association Analysis of Canonical Wnt Signalling Genes in Diabetic Nephropathy

    Get PDF
    Several studies have provided compelling evidence implicating the Wnt signalling pathway in the pathogenesis of diabetic nephropathy. Gene expression profiles associated with renal fibrosis have been attenuated through Wnt pathway modulation in model systems implicating Wnt pathway members as potential therapeutic targets for the treatment of diabetic nephropathy. We assessed tag and potentially functional single nucleotide polymorphisms (SNPs; n = 31) in four key Wnt pathway genes (CTNNB1, AXIN2, LRP5 and LRP6) for association with diabetic nephropathy using a case-control design.SNPs were genotyped using Sequenom or Taqman technologies in 1351 individuals with type 1 diabetes (651 cases with nephropathy and 700 controls without nephropathy). Cases and controls were white and recruited from the UK and Ireland. Association analyses were performed using PLINK, to compare allele and haplotype frequencies in cases and controls. Adjustment for multiple testing was performed by permutation testing.Following logistic regression analysis adjusted by collection centre, duration of T1D, and average HbA1c as covariates, a single SNP in LRP6 (rs1337791) was significantly associated with DN (OR = 0.74; CI: 0.57-0.97; P = 0.028), although this was not maintained following correction for multiple testing. Three additional SNPs (rs2075241 in LRP6; rs3736228 and rs491347 both in LRP5) were marginally associated with diabetic nephropathy, but none of the associations were replicated in an independent dataset. Haplotype and subgroup analysis (according to duration of diabetes, and end-stage renal disease) also failed to reveal an association with diabetic nephropathy.Our results suggest that analysed common variants in CTNNB1, AXIN2, LRP5 and LRP6 are not strongly associated with diabetic nephropathy in type 1 diabetes among white individuals. Our findings, however, cannot entirely exclude these genes or other members of the Wnt pathway, from involvement in the pathogenesis of diabetic nephropathy as our study had limited power to detect variants with small effect size

    Considering the case for an antidepressant drug trial involving temporary deception: a qualitative enquiry of potential participants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systematic reviews of randomised placebo controlled trials of antidepressant medication show small and decreasing differences between pharmacological and placebo arms. In part this finding may relate to methodological problems with conventional trial designs, including their assumption of additivity between drug and placebo trial arms. Balanced placebo designs, which include elements of deception, may address the additivity question, but pose substantial ethical and pragmatic problems. This study aimed to ascertain views of potential study participants of the ethics and pragmatics of various balanced placebo designs, in order to inform the design of future antidepressant drug trials.</p> <p>Methods</p> <p>A qualitative approach was employed to explore the perspectives of general practitioners, psychiatrists, and patients with experience of depression. The doctors were chosen via purposive sampling, while patients were recruited through participating general practitioners. Three focus groups and 12 in-depth interviews were conducted. A vignette-based topic guide invited views on three deceptive strategies: post hoc, authorised and minimised deception. The focus groups and interviews were tape-recorded and transcribed. Transcripts were analysed thematically using Framework.</p> <p>Results</p> <p>Deception in non-research situations was typically perceived as acceptable within specific parameters. All participants could see the potential utility of introducing deception into trial designs, however views on the acceptability of deception within antidepressant drug trials varied substantially. Authorized deception was the most commonly accepted strategy, though some thought this would reduce the effectiveness of the design because participants would correctly guess the deceptive element. The major issues that affected views about the acceptability of deception studies were the welfare and capacity of patients, practicalities of trial design, and the question of trust.</p> <p>Conclusion</p> <p>There is a trade-off between pragmatic and ethical responses to the question of whether, and under what circumstances, elements of deception could be introduced into antidepressant drug trials. Ensuring adequate ethical safeguards within balanced placebo designs is likely to diminish their ability to address the crucial issue of additivity. The balanced placebo designs considered in this study are unlikely to be feasible in future trials of antidepressant medication. However there remains an urgent need to improve the quality of antidepressant drug trials.</p

    Protection from Experimental Cerebral Malaria with a Single Dose of Radiation-Attenuated, Blood-Stage Plasmodium berghei Parasites

    Get PDF
    BACKGROUND: Whole malaria parasites are highly effective in inducing immunity against malaria. Due to the limited success of subunit based vaccines in clinical studies, there has been a renewed interest in whole parasite-based malaria vaccines. Apart from attenuated sporozoites, there have also been efforts to use live asexual stage parasites as vaccine immunogens. METHODOLOGY AND RESULTS: We used radiation exposure to attenuate the highly virulent asexual blood stages of the murine malaria parasite P. berghei to a non-replicable, avirulent form. We tested the ability of the attenuated blood stage parasites to induce immunity to parasitemia and the symptoms of severe malaria disease. Depending on the mouse genetic background, a single high dose immunization without adjuvant protected mice from parasitemia and severe disease (CD1 mice) or from experimental cerebral malaria (ECM) (C57BL/6 mice). A low dose immunization did not protect against parasitemia or severe disease in either model after one or two immunizations. The protection from ECM was associated with a parasite specific antibody response and also with a lower level of splenic parasite-specific IFN-γ production, which is a mediator of ECM pathology in C57BL/6 mice. Surprisingly, there was no difference in the sequestration of CD8+ T cells and CD45+ CD11b+ macrophages in the brains of immunized, ECM-protected mice. CONCLUSIONS: This report further demonstrates the effectiveness of a whole parasite blood-stage vaccine in inducing immunity to malaria and explicitly demonstrates its effectiveness against ECM, the most pathogenic consequence of malaria infection. This experimental model will be important to explore the formulation of whole parasite blood-stage vaccines against malaria and to investigate the immune mechanisms that mediate protection against parasitemia and cerebral malaria

    Chimpanzee and Human Y Chromosomes Are Remarkably Divergent in Structure and Gene Content

    Get PDF
    LetterThe human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome[1, 2]. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis [3, 4]. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes [5, 6, 7, 8], but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, ‘genetic hitchhiking’ effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.National Institutes of Health (U.S.)Howard Hughes Medical Institut
    corecore