14 research outputs found

    Guidelines for the reliable use of high throughput sequencing technologies to detect plant pathogens and pests

    Get PDF
    High-throughput sequencing (HTS) technologies have the potential to become one of the most significant advances in molecular diagnostics. Their use by researchers to detect and characterize plant pathogens and pests has been growing steadily for more than a decade and they are now envisioned as a routine diagnostic test to be deployed by plant pest diagnostics laboratories. Nevertheless, HTS technologies and downstream bioinformatics analysis of the generated datasets represent a complex process including many steps whose reliability must be ensured. The aim of the present guidelines is to provide recommendations for researchers and diagnosticians aiming to reliably use HTS technologies to detect plant pathogens and pests. These guidelines are generic and do not depend on the sequencing technology or platform. They cover all the adoption processes of HTS technologies from test selection to test validation as well as their routine implementation. A special emphasis is given to key elements to be considered: undertaking a risk analysis, designing sample panels for validation, using proper controls, evaluating performance criteria, confirming and interpreting results. These guidelines cover any HTS test used for the detection and identification of any plant pest (viroid, virus, bacteria, phytoplasma, fungi and fungus-like protists, nematodes, arthropods, plants) from any type of matrix. Overall, their adoption by diagnosticians and researchers should greatly improve the reliability of pathogens and pest diagnostics and foster the use of HTS technologies in plant health

    Genome-wide association analysis identified SNPs closely linked to a gene resistant to Soil-borne wheat mosaic virus

    Get PDF
    Citation: Liu, S., . . . & Bockus, W. (2014). Genome-wide association analysis identified SNPs closely linked to a gene resistant to Soil-borne wheat mosaic virus. Theoretical and Applied Genetics, 127(5), 1039-1047. https//www.doi.org/10.1007/s00122-014-2277-zSoil-borne wheat mosaic virus (SBWMV) disease is a serious viral disease of winter wheat growing areas worldwide. SBWMV infection can significantly reduce grain yield up to 80%. Developing resistant wheat cultivars is the only feasible strategy to reduce the losses. In this study, wheat Infinium iSelect Beadchips with 9K wheat SNPs were used to genotype an association mapping population of 205 wheat accessions. Six new SNPs from two genes were identified to be significantly associated with the gene for SBWMV resistance on chromosome 5D. The SNPs and Xgwm469, a SSR marker that has been reported to be associated with the gene, were mapped close to the gene using F6-derived recombinant inbred lines (RILs) from the cross between a resistant parent ‘Heyne’ and a susceptible parent ‘Trego’. Two representative SNPs, wsnp_CAP11_c209_198467 and wsnp_JD_c4438_5568170, from the two linked genes in wheat were converted into KBioscience Competitive Allele-Specific Polymerase (KASP) assays and can be easily used in marker-assisted selection to improve wheat resistance to SBWMV in breeding

    Detection of Polymyxa graminis in a barley crop in Australia

    No full text
    Polymyxa graminis was detected in the roots of barley plants from a field near Wondai, Queensland, in 2009. P. graminis was identified by characteristic sporosori in roots stained with trypan blue. The presence of P. graminis f. sp. tepida (which is hosted by wheat and oats as well as barley) in the roots was confirmed by specific PCR tests based on nuclear ribosomal DNA. P. graminis is the vector of several damaging soil-borne virus diseases of cereals in the genera Furovirus, Bymovirus and Pecluvirus. No virus particles were detected in sap extracts from leaves of stunted barley plants with leaf chlorosis and increased tillering. Further work is required to determine the distribution of P. graminis in Australian grain crops and the potential for establishment and spread of the exotic soil-borne viruses that it vectors
    corecore