2,732 research outputs found
Electrical capacitance tomography for flow imaging: System model for development of image reconstruction algorithms and design of primary sensors
A software tool that facilitates the development of image reconstruction algorithms, and the design of optimal capacitance sensors for a capacitance-based 12-electrode tomographic flow imaging system are described. The core of this software tool is the finite element (FE) model of the sensor, which is implemented in OCCAM-2 language and run on the Inmos T800 transputers. Using the system model, the in-depth study of the capacitance sensing fields and the generation of flow model data are made possible, which assists, in a systematic approach, the design of an improved image-reconstruction algorithm. This algorithm is implemented on a network of transputers to achieve a real-time performance. It is found that the selection of the geometric parameters of a 12-electrode sensor has significant effects on the sensitivity distributions of the capacitance fields and on the linearity of the capacitance data. As a consequence, the fidelity of the reconstructed images are affected. Optimal sensor designs can, therefore, be provided, by accommodating these effect
HOIL-1L Interacting Protein (HOIP) as an NF-κB Regulating Component of the CD40 Signaling Complex
The tumor necrosis factor receptor (TNFR) superfamily mediates signals critical for regulation of the immune system. One family member, CD40, is important for the efficient activation of antibody-producing B cells and other antigen-presenting cells. The molecules and mechanisms that mediate CD40 signaling are only partially characterized. Proteins known to interact with the cytoplasmic domain of CD40 include members of the TNF receptor-associated factor (TRAF) family, which regulate signaling and serve as links to other signaling molecules. To identify additional proteins important for CD40 signaling, we used a combined stimulation/immunoprecipitation procedure to isolate CD40 signaling complexes from B cells and characterized the associated proteins by mass spectrometry. In addition to known CD40-interacting proteins, we detected SMAC/DIABLO, HTRA2/Omi, and HOIP/RNF31/PAUL/ZIBRA. We found that these previously unknown CD40-interacting partners were recruited in a TRAF2-dependent manner. HOIP is a ubiquitin ligase capable of mediating NF-κB activation through the ubiquitin-dependent activation of IKKγ. We found that a mutant HOIP molecule engineered to lack ubiquitin ligase activity inhibited the CD40-mediated activation of NF-κB. Together, our results demonstrate a powerful approach for the identification of signaling molecules associated with cell surface receptors and indicate an important role for the ubiquitin ligase activity of HOIP in proximal CD40 signaling
In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae
Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections
Somatic ‘Soluble’ Adenylyl Cyclase Isoforms Are Unaffected in Sacytm1Lex/Sacytm1Lex ‘Knockout’ Mice
BACKGROUND: Mammalian Soluble adenylyl cyclase (sAC, Adcy10, or Sacy) represents a source of the second messenger cAMP distinct from the widely studied, G protein-regulated transmembrane adenylyl cyclases. Genetic deletion of the second through fourth coding exons in Sacy(tm1Lex)/Sacy(tm1Lex) knockout mice results in a male sterile phenotype. The absence of any major somatic phenotype is inconsistent with the variety of somatic functions identified for sAC using pharmacological inhibitors and RNA interference. PRINCIPAL FINDINGS: We now use immunological and molecular biological methods to demonstrate that somatic tissues express a previously unknown isoform of sAC, which utilizes a unique start site, and which 'escapes' the design of the Sacy(tm1Lex) knockout allele. CONCLUSIONS/SIGNIFICANCE: These studies reveal increased complexity at the sAC locus, and they suggest that the known isoforms of sAC play a unique function in male germ cells
Image-based Search and Retrieval for Biface Artefacts using Features Capturing Archaeologically Significant Characteristics
Archaeologists are currently producing huge numbers of digitized photographs to record and preserve artefact finds. These images are used to identify and categorize artefacts and reason about connections between artefacts and perform outreach to the public. However, finding specific types of images within collections remains a major challenge. Often, the metadata associated with images is sparse or is inconsistent. This makes keyword-based exploratory search difficult, leaving researchers to rely on serendipity and slowing down the research process. We present an image-based retrieval system that addresses this problem for biface artefacts. In order to identify artefact characteristics that need to be captured by image features, we conducted a contextual inquiry study with experts in bifaces. We then devised several descriptors for matching images of bifaces with similar artefacts. We evaluated the performance of these descriptors using measures that specifically look at the differences between the sets of images returned by the search system using different descriptors. Through this nuanced approach, we have provided a comprehensive analysis of the strengths and weaknesses of the different descriptors and identified implications for design in the search systems for archaeology
Haplotype inference in crossbred populations without pedigree information
<p>Abstract</p> <p>Background</p> <p>Current methods for haplotype inference without pedigree information assume random mating populations. In animal and plant breeding, however, mating is often not random. A particular form of nonrandom mating occurs when parental individuals of opposite sex originate from distinct populations. In animal breeding this is called <it>crossbreeding </it>and <it>hybridization </it>in plant breeding. In these situations, association between marker and putative gene alleles might differ between the founding populations and origin of alleles should be accounted for in studies which estimate breeding values with marker data. The sequence of alleles from one parent constitutes one haplotype of an individual. Haplotypes thus reveal allele origin in data of crossbred individuals.</p> <p>Results</p> <p>We introduce a new method for haplotype inference without pedigree that allows nonrandom mating and that can use genotype data of the parental populations and of a crossbred population. The aim of the method is to estimate line origin of alleles. The method has a Bayesian set up with a Dirichlet Process as prior for the haplotypes in the two parental populations. The basic idea is that only a subset of the complete set of possible haplotypes is present in the population.</p> <p>Conclusion</p> <p>Line origin of approximately 95% of the alleles at heterozygous sites was assessed correctly in both simulated and real data. Comparing accuracy of haplotype frequencies inferred with the new algorithm to the accuracy of haplotype frequencies inferred with PHASE, an existing algorithm for haplotype inference, showed that the DP algorithm outperformed PHASE in situations of crossbreeding and that PHASE performed better in situations of random mating.</p
Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.
A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions
Leak-before-break: Global perspectives and procedures
Structural integrity of components containing fluids is critical for economic, environmental and safety issues. Any risk of catastrophic failure, in the form of either brittle or ductile manner, is not acceptable across the industries. Consequently, many efforts have been invested in the structural integrity aspect to improve the assessment methodologies. One of the ways to aid the decision whether or not to live with the defect is through the demonstration of Leak-Before-Break (LBB). LBB which is a well-established practice in the nuclear industry, albeit as a defence-in-depth argument or to justify the elimination of pipe whip restraints, also finds its applicability in other industries. A review of the available procedures, their associated limitations and the research carried out in the last thirty years is presented in this paper. Application of this concept within non-nuclear industries is also discussed
- …