81 research outputs found
A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR
<p>Abstract</p> <p>Background</p> <p>Although cardiovascular magnetic resonance (CMR) is frequently performed to measure accurate LV volumes and ejection fractions, LV volume-time curves (VTC) derived ejection and filling rates are not routinely calculated due to lack of robust LV segmentation techniques. VTC derived peak filling rates can be used to accurately assess LV diastolic function, an important clinical parameter. We developed a novel geometry-independent dual-contour propagation technique, making use of LV endocardial contours manually drawn at end systole and end diastole, to compute VTC and measured LV ejection and filling rates in hypertensive patients and normal volunteers.</p> <p>Methods</p> <p>39 normal volunteers and 49 hypertensive patients underwent CMR. LV contours were manually drawn on all time frames in 18 normal volunteers. The dual-contour propagation algorithm was used to propagate contours throughout the cardiac cycle. The results were compared to those obtained with single-contour propagation (using either end-diastolic or end-systolic contours) and commercially available software. We then used the dual-contour propagation technique to measure peak ejection rate (PER) and peak early diastolic and late diastolic filling rates (ePFR and aPFR) in all normal volunteers and hypertensive patients.</p> <p>Results</p> <p>Compared to single-contour propagation methods and the commercial method, VTC by dual-contour propagation showed significantly better agreement with manually-derived VTC. Ejection and filling rates by dual-contour propagation agreed with manual (dual-contour – manual PER: -0.12 ± 0.08; ePFR: -0.07 ± 0.07; aPFR: 0.06 ± 0.03 EDV/s, all P = NS). However, the time for the manual method was ~4 hours per study versus ~7 minutes for dual-contour propagation. LV systolic function measured by LVEF and PER did not differ between normal volunteers and hypertensive patients. However, ePFR was lower in hypertensive patients vs. normal volunteers, while aPFR was higher, indicative of altered diastolic filling rates in hypertensive patients.</p> <p>Conclusion</p> <p>Dual-propagated contours can accurately measure both systolic and diastolic volumetric indices that can be applied in a routine clinical CMR environment. With dual-contour propagation, the user interaction that is routinely performed to measure LVEF is leveraged to obtain additional clinically relevant parameters.</p
Curcumin-Arteether Combination Therapy of Plasmodium berghei-Infected Mice Prevents Recrudescence Through Immunomodulation
Earlier studies in this laboratory have shown the potential of artemisinin-curcumin combination therapy in experimental malaria. In a parasite recrudescence model in mice infected with Plasmodium berghei (ANKA), a single dose of alpha,beta-arteether (ART) with three oral doses of curcumin prevented recrudescence, providing almost 95% protection. The parasites were completely cleared in blood with ART-alone (AE) or ART+curcumin (AC) treatments in the short-term, although the clearance was faster in the latter case involving increased ROS generation. But, parasites in liver and spleen were not cleared in AE or AC treatments, perhaps, serving as a reservoir for recrudescence. Parasitemia in blood reached up to 60% in AE-treated mice during the recrudescence phase, leading to death of animals. A transient increase of up to 2–3% parasitemia was observed in AC-treatment, leading to protection and reversal of splenomegaly. A striking increase in spleen mRNA levels for TLR2, IL-10 and IgG-subclass antibodies but a decrease in those for INFγ and IL-12 was observed in AC-treatment. There was a striking increase in IL-10 and IgG subclass antibody levels but a decrease in INFγ levels in sera leading to protection against recrudescence. AC-treatment failed to protect against recrudescence in TLR2−/− and IL-10−/− animals. IL-10 injection to AE-treated wild type mice and AC-treated TLR2−/− mice was able to prolong survival. Blood from the recrudescence phase in AE-treatment, but not from AC-treatment, was able to reinfect and kill naïve animals. Sera from the recrudescence phase of AC-treated animals reacted with several parasite proteins compared to that from AE-treated animals. It is proposed that activation of TLR2-mediated innate immune response leading to enhanced IL-10 production and generation of anti-parasite antibodies contribute to protective immunity in AC-treated mice. These results indicate a potential for curcumin-based combination therapy to be tested for prevention of recrudescence in falciparum and relapse in vivax malaria
Effects of NFKB1 and NFKBIA Gene Polymorphisms on Susceptibility to Environmental Factors and the Clinicopathologic Development of Oral Cancer
encoding IkappaBalpha (IκBα) with both the susceptibility to develop OSCC and the clinicopathological characteristics of the tumors.<.05), compared with those patients CC homozygotes. 519 might be a predictive factor for the distal metastasis of OSCC in Taiwanese
Very small size proteoliposomes abrogate cross-presentation of tumor antigens by myeloid-derived suppressor cells and induce their differentiation to dendritic cells
Identification and characterisation of putative seminal fluid proteins from male reproductive tissue EST libraries in tiger beetles
Progressive hemorrhage and myotoxicity induced by echis carinatus venom in murine model: neutralization by inhibitor cocktail of n,n,n `,n `-tetrakis (2-pyridylmethyl) ethane-1,2-diamine and silymarin
Viperbite is often associated with severe local toxicity, including progressive hemorrhage and myotoxicity, persistent even after the administration of anti-snake venom (ASV). In the recent past, investigations have revealed the orchestrated actions of Zn2+ metalloproteases (Zn(2+)MPs), phospholipase A(2)s (PLA(2)s) and hyaluronidases (HYs) in the onset and progression of local toxicity from the bitten site. As a consequence, venom researchers and medical practitioners are in deliberate quest of potent molecules alongside ASV to tackle the brutal local manifestations induced by aforesaid venom toxins. Based on these facts, we have demonstrated the protective efficacy of inhibitor cocktail containing equal ratios of N,N,N', N'-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and silymarin (SLN) against progressive local toxicity induced by Echis carinatus venom (ECV). In our previous study we have shown the inhibitory potentials of TPEN towards Zn(2+)MPs of ECV (IC50: 6.7 mu M). In this study we have evaluated in vitro inhibitory potentials of SLN towards PLA(2)s (IC50: 12.5 mu M) and HYs (IC50: 8 mu M) of ECV in addition to docking studies. Further, we have demonstrated the protection of ECV induced local toxicity with 10 mM inhibitor cocktail following 15, 30 min (for hemorrhage and myotoxicity); 60 min (for hemorrhage alone) of ECV injection in murine model. The histological examination of skin and thigh muscle sections taken out from the site of ECV injection substantiated the overall protection offered by inhibitor cocktail. In conclusion, the protective efficacy of inhibitor cocktail is of high interest and can be administered locally alongside ASV to treat severe local toxicity
Why do medical students under-perform? A cross-sectional study from Kempe Gowda Institute of Medical Sciences, Bangalore
Dynamics Of A Two-Link Flexible System Undergoing Locking: Mathematical Modelling And Comparison With Experiments
Space structures such as the solar panels or antenna, when deployed in space, have large dimensions, low mass to size ratio, large inertias and relatively low structural rigidity. Due to space restrictions, these structures are originally in stowed configurations and are deployed into their full size in space. Typically, these systems at the end of deployment undergo locking at the joints and lose their rotational degrees of freedom at the joints. In addition, during locking vibrations are induced in these light-weight, flexible mechanisms which have to be actively or passively damped. In this paper a mathematical model with an experiment is presented for a two-link flexible system, which undergoes locking during motion. The structural flexibility is modelled by the finite element method, and the equations of motion are derived using the Lagrangian formulation. The locking at the joints is modelled by the momentum balance method, which enables one to predict the rigid body as well as the elastic motion of the system after locking. The experimental setup consists of two flexible aluminum links with a revolute joint at the end of each link, and has a locking mechanism for each joint. The links lock as a predefined angle. The links are instrumented with strain gages and the joint rotations are measured by potentiometers. The sensor readings are acquired and stored on a PC based data acquisition system. The simulation results such as the locking time, response of each joint and the strain at the base of each link match very well with the experimental results. Thus, the momentum balance method is capable of predicting fairly accurately the dynamics of a flexible system which undergo locking during motion
Authentication of MAV communication using Caesar Cipher cryptography
This paper suggests the improvement of security in Micro Aerial Vehicle (MAV) communication protocol for the communication between the Ground Control Station (GCS) and the MAV. Proposed method involves the implementation of the Caesar Cipher method of data encryption with a secured key. The method of Ciphering is used for authentication of the Micro Aerial Vehicle at the beginning of the communication. Later the same is used for critical command, control and parameter messages at varied frequencies. This results in improvement of security and reliability of the system in defense and other high security applications
- …
