79 research outputs found

    The relation between genotype and phenotype in cystic fibrosis - Analysis of the most common mutation (ΔF 508)

    Get PDF
    Background and methods. Both the clinical manifestations of cystic fibrosis and the genotypes of patients are heterogeneous but the associations between the two are not known. We therefore studied blood samples from 293 patients with cystic fibrosis for the presence of the most common disease-causing mutation (ΔF 508) on chromosome 7 and compared the results with the clinical manifestations of the disease. Results. The prevalence of the ΔF 508 allele in the cohort was 71 percent; 52 percent of the patients were homozygous for the mutation, 40 percent were heterozygous, and 8 percent had other, undefined mutations. The patients who were homozygous for the mutation had received a diagnosis of cystic fibrosis at an earlier age and had a greater frequency of pancreatic insufficiency; pancreatic insufficiency was present in 99 percent of the homozygous patients, but in 72 percent of the heterozygous patients and only 36 percent of the patients with other genotypes. The patients with pancreatic insufficiency in all three genotype groups had similar clinical characteristics, reflected by an early age at diagnosis, similar sweat chloride values at diagnosis, similar severity of pulmonary disease, and similar percentiles for weight. In contrast, the patients in the heterozygous-genotype and other-genotype groups who did not have pancreatic insufficiency were older and had milder disease. They had lower sweat chloride value at diagnosis, normal nutritional status, and better pulmonary function after adjustment for age. Conclusions. The variable clinical course in patients with cystic fibrosis can be attributed at least in part to specific genotypes at the locus of the cystic fibrosis gene.published_or_final_versio

    Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation

    Get PDF
    <div><p>Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in <i>Cftr<sup>F508del</sup></i> homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the <i>F508del-CFTR</i> mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from <i>F508del</i> homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both <i>in vivo</i>, in mice, and <i>in vitro</i>, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 <i>F508del-CFTR</i> homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells <i>in vivo</i>, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of <i>TNF/TNF-alpha (tumor necrosis factor)</i> and <i>CXCL8</i> (<i>chemokine [C-X-C motif] ligand 8</i>) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the <i>F508del-CFTR</i> mutation.</p></div

    Histo-Blood Group Gene Polymorphisms as Potential Genetic Modifiers of Infection and Cystic Fibrosis Lung Disease Severity

    Get PDF
    The pulmonary phenotype in cystic fibrosis (CF) is variable; thus, environmental and genetic factors likely contribute to clinical heterogeneity. We hypothesized that genetically determined ABO histo-blood group antigen (ABH) differences in glycosylation may lead to differences in microbial binding by airway mucus, and thus predispose to early lung infection and more severe lung disease in a subset of patients with CF. infection in the severe or mild groups. Multivariate analyses of other clinical phenotypes, including gender, asthma, and meconium ileus demonstrated no differences between groups based on ABH type. infection, nor was there any association with other clinical phenotypes in a group of 808 patients homozygous for the ΔF508 mutation

    Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene

    No full text
    Five different mutations have been identified in the gene causing cystic fibrosis (CF) through sequencing regions encompassing exons 1-8, including the 5' untranslated leader. Two of these apparent mutations are missense mutations, one in exon 3 (Gly to Glu at position 85; G85E) and another in exon 5 (Gly to Arg at 178; G178R), both causing significant changes in the corresponding amino acids in the encoded protein - cystic fibrosis transmembrane conductance regulator (CFTR). Two others affect the highly conserved RNA splice junction flanking the 3' end of exons 4 and 5 (621 + 1G → T, 711 + 1G → T), resulting in a probable splicing defect. The last mutation is a single-basepair deletion in exon 4, causing a frameshift. These five mutations account for the 9 of 31 non-ΔF508 CF chromosomes in our Canadian CF family collection and they are not found in any of the normal chromosomes. Three of the mutations, 621 + 1G → T, 711 + 1G → T, and G85E, are found in the French-Canadian population, with 621 + 1G → T being the most abundant (5/7). There are two other sequence variations in the CFTR gene; one of them (129G → C) is located 4 nucleotides upstream of the proposed translation initiation codon and, although present only on CF chromosomes, it is not clear whether it is a disease-causing mutation; the other (R75Q) is most likely a sequence variation within the coding region.link_to_subscribed_fulltex
    • …
    corecore