19 research outputs found
Fluoxetine Exerts Age-Dependent Effects on Behavior and Amygdala Neuroplasticity in the Rat
The selective serotonin reuptake inhibitor (SSRI) Prozac® (fluoxetine) is the only registered antidepressant to treat depression in children and adolescents. Yet, while the safety of SSRIs has been well established in adults, serotonin exerts neurotrophic actions in the developing brain and thereby may have harmful effects in adolescents. Here we treated adolescent and adult rats chronically with fluoxetine (12 mg/kg) at postnatal day (PND) 25 to 46 and from PND 67 to 88, respectively, and tested the animals 7–14 days after the last injection when (nor)fluoxetine in blood plasma had been washed out, as determined by HPLC. Plasma (nor)fluoxetine levels were also measured 5 hrs after the last fluoxetine injection, and matched clinical levels. Adolescent rats displayed increased behavioral despair in the forced swim test, which was not seen in adult fluoxetine treated rats. In addition, beneficial effects of fluoxetine on wakefulness as measured by electroencephalography in adults was not seen in adolescent rats, and age-dependent effects on the acoustic startle response and prepulse inhibition were observed. On the other hand, adolescent rats showed resilience to the anorexic effects of fluoxetine. Exploratory behavior in the open field test was not affected by fluoxetine treatment, but anxiety levels in the elevated plus maze test were increased in both adolescent and adult fluoxetine treated rats. Finally, in the amygdala, but not the dorsal raphe nucleus and medial prefrontal cortex, the number of PSA-NCAM (marker for synaptic remodeling) immunoreactive neurons was increased in adolescent rats, and decreased in adult rats, as a consequence of chronic fluoxetine treatment. No fluoxetine-induced changes in 5-HT1A receptor immunoreactivity were observed. In conclusion, we show that fluoxetine exerts both harmful and beneficial age-dependent effects on depressive behavior, body weight and wakefulness, which may relate, in part, to differential fluoxetine-induced neuroplasticity in the amygdala
Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway1
Cell cycle regulation is critical for maintenance of genome integrity. A prominent factor that guarantees genomic stability of cells is p53 (ref. 1). The P53 gene encodes a transcription factor that has a role as a tumour suppressor. Identification of p53-target genes should provide greater insight into the molecular mechanisms that mediate the tumour suppressor activities of p53. The rodent Pc3/Tis21 gene was initially described as an immediate early gene induced by tumour promoters and growth factors in PC12 and Swiss 3T3 cells. It is expressed in a variety of cell and tissue types and encodes a remarkably labile protein. Pc3/Tis21 has a strong sequence similarity to the human antiproliferative BTG1 gene cloned from a chromosomal translocation of a B-cell chronic lymphocytic leukaemia. This similarity led us to speculate that BTG1 and the putative human homologue of Pc3/Tis21 (named BTG2) were members of a new family of genes involved in growth control and/or differentiation. This hypothesis was recently strengthened by the identification of a new antiproliferative protein, named TOB, which shares sequence similarity with BTG1 and PC3/TIS21 (ref. 7). Here, we cloned and localized the human BTG2 gene. We show that BTG2 expression is induced through a p53-dependent mechanism and that BTG2 function may be relevant to cell cycle control and cellular response to DNA damag
Glucocorticoid Receptor and FKBP5 Expression Is Altered Following Exposure to Chronic Stress:Modulation by Antidepressant Treatment
Major depression is thought to originate from the interaction between susceptibility genes and adverse environmental events, in particular stress. The hypothalamus–pituitary–adrenal (HPA) axis is the major system involved in stress response and its dysregulation is an important element in the pathogenesis of depression. The stress response is therefore finely tuned through a series of mechanisms that control the trafficking of glucocorticoid receptors (GRs) to the nucleus, including binding to the chaperone protein FKBP5 and receptor phosphorylation, suggesting that these elements may also be affected under pathologic conditions. On these bases, we investigated FKBP5 and GR expression and phosphorylation in the hippocampus (ventral and dorsal) and in the prefrontal cortex of rats exposed to chronic mild stress (CMS) and we analyzed the effect of a concomitant antidepressant treatment. We found that animals exposed to CMS show increased expression of FKBP5 as well as enhanced cytoplasmic levels of GR, primarily in ventral hippocampus and prefrontal cortex. Chronic treatment with the antidepressant duloxetine is able to normalize such alterations, mainly in the prefrontal cortex. Moreover, we demonstrate that CMS-induced alterations of GR trafficking and transcription may be sustained by changes in receptor phosphorylation, which are also modulated by pharmacological intervention. In summary, while GR-related changes after CMS might be relevant for the depressive phenotype, the ability of antidepressant treatment to correct some of these alterations may contribute to the normalization of HPA axis dysfunctions associated with stress-related disorders
Perinatal vs Genetic Programming of Serotonin States Associated with Anxiety
Large numbers of women undergo antidepressant treatment during pregnancy; however, long-term consequences for their offspring remain largely unknown. Rodents exposed to serotonin transporter (SERT)-inhibiting antidepressants during development show changes in adult emotion-like behavior. These changes have been equated with behavioral alterations arising from genetic reductions in SERT. Both models are highly relevant to humans yet they vary in their time frames of SERT disruption. We find that anxiety-related behavior and, importantly, underlying serotonin neurotransmission diverge between the two models. In mice, constitutive loss of SERT causes life-long increases in anxiety-related behavior and hyperserotonemia. Conversely, early exposure to the antidepressant escitalopram (ESC; Lexapro) results in decreased anxiety-related behavior beginning in adolescence, which is associated with adult serotonin system hypofunction in the ventral hippocampus. Adult behavioral changes resulting from early fluoxetine (Prozac) exposure were different from those of ESC and, although somewhat similar to SERT deficiency, were not associated with changes in hippocampal serotonin transmission in late adulthood. These findings reveal dissimilarities in adult behavior and neurotransmission arising from developmental exposure to different widely prescribed antidepressants that are not recapitulated by genetic SERT insufficiency. Moreover, they support a pivotal role for serotonergic modulation of anxiety-related behavior