5,486 research outputs found

    Information Gathering in Ad-Hoc Radio Networks with Tree Topology

    Full text link
    We study the problem of information gathering in ad-hoc radio networks without collision detection, focussing on the case when the network forms a tree, with edges directed towards the root. Initially, each node has a piece of information that we refer to as a rumor. Our goal is to design protocols that deliver all rumors to the root of the tree as quickly as possible. The protocol must complete this task within its allotted time even though the actual tree topology is unknown when the computation starts. In the deterministic case, assuming that the nodes are labeled with small integers, we give an O(n)-time protocol that uses unbounded messages, and an O(n log n)-time protocol using bounded messages, where any message can include only one rumor. We also consider fire-and-forward protocols, in which a node can only transmit its own rumor or the rumor received in the previous step. We give a deterministic fire-and- forward protocol with running time O(n^1.5), and we show that it is asymptotically optimal. We then study randomized algorithms where the nodes are not labelled. In this model, we give an O(n log n)-time protocol and we prove that this bound is asymptotically optimal

    Physical activity attenuates the mid-adolescent peak in insulin resistance but by late adolescence the effect is lost: a longitudinal study with annual measures from 9–16 years (EarlyBird 66)

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordthere is another ORE record for this publication: http://hdl.handle.net/10871/18754Aims/hypothesis: The aim of this work was to test whether the mid-adolescent peak in insulin resistance (IR) and trends in other metabolic markers are influenced by long-term exposure to physical activity. Methods: Physical activity (7 day ActiGraph accelerometry), HOMA-IR and other metabolic markers (glucose, fasting insulin, HbA1c, lipids and BP) were measured annually from age 9 years to 16 years in 300 children (151 boys) from the EarlyBird study in Plymouth, UK. The activity level of each child was characterised, with 95% reliability, by averaging their eight annual physical activity measures. Age-related trends in IR and metabolic health were analysed by multi-level modelling, with physical activity as the exposure measure (categorical and continuous) and body fat percentage (assessed by dual-energy X-ray absorptiometry) and pubertal status (according to age at peak height velocity and Tanner stage) as covariates. Results: The peak in IR at age 12–13 years was 17% lower (p < 0.001) in the more active adolescents independently of body fat percentage and pubertal status. However, this difference diminished progressively over the next 3 years and had disappeared completely by the age of 16 years (e.g. difference was −14% at 14 years, −8% at 15 years and +1% at 16 years; ‘physical activity × age2’ interaction, p < 0.01). Triacylglycerol levels in girls (−9.7%, p = 0.05) and diastolic blood pressure in boys (−1.20 mmHg, p = 0.03) tended to be lower throughout adolescence in the more active group. Conclusions/interpretation: Our finding that physical activity attenuates IR during mid-adolescence may be clinically important. It remains to be established whether the temporary attenuation in IR during this period has implications for the development of diabetes in adolescence and for future metabolic health generally.The EarlyBird study (BSM, JH, MM, ANJ, LDV, TJW) was supported by the Bright Future Trust, the Kirby Laing Foundation, the Peninsula Foundation and the EarlyBird Diabetes Trust. WEH was supported by the National Institute for Health Research (NIHR) Collaborations for Leadership in Applied Health Research and Care (CLAHRC)

    Study of mast cell density, distribution and morphology in skin lesions of leprosy

    Get PDF
    Background: Mast cells are found at all levels of dermis, grouped around blood vessels, nerves and appendages. An increase in the mast cell number has been reported in various cutaneous diseases. Mast cells respond to diverse range of stimuli like neuronal impulses, allergens, antigens, hormones, cytokines from T cells and keratinocytes and thus play a role in manifestation of dermatological disorders. The objective was to study mast cell density in various subsets of Hansen’s disease and analyse whether the distribution and density vary amongst the subsets. Methods: A total of 60 skin biopsies diagnosed as leprosy were included in this study. 10 control slides were also studied for mast cell density and distribution. Histopathological diagnosis was made on the biopsy and mast cell density and distribution was assessed on toluidine blue stained sections and compared with those of controls. Results: All the subsets of Hansen’s disease studied showed an increase in the number of mast cells. The highest mean mast cell count was noted in lepromatous leprosy (66/mm2), followed by erythema nodosum leprosum (42.6/mm2) and borderline lepromatous leprosy (40.8/mm2). The mean mast cell count showed progressive increase over the immunological spectrum of tuberculoid leprosy to lepromatous leprosy. The mast cells showed spindle and ovoid morphology in all the lesions (active) while round morphology was seen in controls. Conclusion: Tissue mast cell number, distribution and morphology vary depending on the degree of activation in different leprosy lesions. This may have a bearing on the diagnosis and management

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    Macroscopic transport by synthetic molecular machines

    Get PDF
    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.

    Perceived barriers and facilitators to positive therapeutic change for people with intellectual disabilities: client, carer and clinical psychologist perspectives

    Get PDF
    Studies have highlighted successful outcomes of psychological therapies for people with intellectual disabilities. However, processes underlying these outcomes are uncertain. Thematic analysis was used to explore the perceptions of three clinical psychologists, six clients and six carers of barriers and facilitators to therapeutic change for people with intellectual disabilities. Six themes were identified relating to: what the client brings as an individual and with regard to their wider system; therapy factors, including the therapeutic relationship and adaptations; psychologists acting as a ‘mental health GP’ to coordinate care; systemic dependency; and the concept of the revolving door in intellectual disability services. The influence of barriers and facilitators to change is complex, with facilitators overcoming barriers and yet simultaneously creating more barriers. Given their potential impact on the psychologists’ roles and access to therapy for people with intellectual disabilities, findings suggest these factors should be formulated as part of the therapeutic process

    Muscle fiber conduction velocity is more affected after eccentric than concentric exercise

    No full text
    It has been shown that mean muscle fiber conduction velocity (CV) can be acutely impaired after eccentric exercise. However, it is not known whether this applies to other exercise modes. Therefore, the purpose of this experiment was to compare the effects of eccentric and concentric exercises on CV, and amplitude and frequency content of surface electromyography (sEMG) signals up to 24 h post-exercise. Multichannel sEMG signals were recorded from biceps brachii muscle of the exercised arm during isometric maximal voluntary contraction (MVC) and electrically evoked contractions induced by motor-point stimulation before, immediately after and 2 h after maximal eccentric (ECC group, N = 12) and concentric (CON group, N = 12) elbow flexor exercises. Isometric MVC decreased in CON by 21.7 ± 12.0% (± SD, p < 0.01) and by 30.0 ± 17.7% (p < 0.001) in ECC immediately post-exercise when compared to baseline. At 2 h post-exercise, ECC showed a reduction in isometric MVC by 24.7 ± 13.7% (p < 0.01) when compared to baseline, while no significant reduction (by 8.0 ± 17.0%, ns) was observed in CON. Similarly, reduction in CV was observed only in ECC both during the isometric MVC (from baseline of 4.16 ± 0.3 to 3.43 ± 0.4 m/s, p < 0.001) and the electrically evoked contractions (from baseline of 4.33 ± 0.4 to 3.82 ± 0.3 m/s, p < 0.001). In conclusion, eccentric exercise can induce a greater and more prolonged reduction in muscle force production capability and CV than concentric exercis
    corecore