146 research outputs found

    Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics

    Get PDF
    The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with \u3c1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate\u3edramatic, albeit imperfect, recovery of rod- and cone-photoreceptor-based vision after RPE65 gene therapy

    A study of the distribution of phylogenetically conserved blocks within clusters of mammalian homeobox genes

    Get PDF
    Genome sequencing efforts of the last decade have produced a large amount of data, which has enabled whole-genome comparative analyses in order to locate potentially functional elements and study the overall patterns of phylogenetic conservation. In this paper we present a statistically based method for the characterization of these patterns in mammalian DNA sequences. We have applied this approach to the study of exceptionally well conserved homeobox gene clusters (Hox), based on an alignment of six species, and we have constructed a map of Hox cataloguing the conserved fragments, along with their locations in relation to the genes and other landmarks, sometimes showing unexpected layouts

    Cataloguing functionally relevant polymorphisms in gene DNA ligase I: a computational approach

    Get PDF
    A computational approach for identifying functionally relevant SNPs in gene LIG1 has been proposed. LIG1 is a crucial gene which is involved in excision repair pathways and mutations in this gene may lead to increase sensitivity towards DNA damaging agents. A total of 792 SNPs were reported to be associated with gene LIG1 in dbSNP. Different web server namely SIFT, PolyPhen, CUPSAT, FASTSNP, MAPPER and dbSMR were used to identify potentially functional SNPs in gene LIG1. SIFT, PolyPhen and CUPSAT servers predicted eleven nsSNPs to be intolerant, thirteen nsSNP to be damaging and two nsSNPs have the potential to destabilize protein structure. The nsSNP rs11666150 was predicted to be damaging by all three servers and its mutant structure showed significant increase in overall energy. FASTSNP predicted twenty SNPs to be present in splicing modifier binding sites while rSNP module from MAPPER server predicted nine SNPs to influence the binding of transcription factors. The results from the study may provide vital clues in establishing affect of polymorphism on phenotype and in elucidating drug response

    Isoform Diversity and Regulation in Peripheral and Central Neurons Revealed through RNA-Seq

    Get PDF
    To fully understand cell type identity and function in the nervous system there is a need to understand neuronal gene expression at the level of isoform diversity. Here we applied Next Generation Sequencing of the transcriptome (RNA-Seq) to purified sensory neurons and cerebellar granular neurons (CGNs) grown on an axonal growth permissive substrate. The goal of the analysis was to uncover neuronal type specific isoforms as a prelude to understanding patterns of gene expression underlying their intrinsic growth abilities. Global gene expression patterns were comparable to those found for other cell types, in that a vast majority of genes were expressed at low abundance. Nearly 18% of gene loci produced more than one transcript. More than 8000 isoforms were differentially expressed, either to different degrees in different neuronal types or uniquely expressed in one or the other. Sensory neurons expressed a larger number of genes and gene isoforms than did CGNs. To begin to understand the mechanisms responsible for the differential gene/isoform expression we identified transcription factor binding sites present specifically in the upstream genomic sequences of differentially expressed isoforms, and analyzed the 3â€Č untranslated regions (3â€Č UTRs) for microRNA (miRNA) target sites. Our analysis defines isoform diversity for two neuronal types with diverse axon growth capabilities and begins to elucidate the complex transcriptional landscape in two neuronal populations

    Exciting new advances in oral cancer diagnosis: avenues to early detection

    Get PDF
    The prognosis for patients with oral squamous cell carcinoma remains poor in spite of advances in therapy of many other malignancies. Early diagnosis and treatment remains the key to improved patient survival. Because the scalpel biopsy for diagnosis is invasive and has potential morbidity, it is reserved for evaluating highly suspicious lesions and not for the majority of oral lesions which are clinically not suspicious. Furthermore, scalpel biopsy has significant interobserver and intraobserver variability in the histologic diagnosis of dysplasia. There is an urgent need to devise critical diagnostic tools for early detection of oral dysplasia and malignancy that are practical, noninvasive and can be easily performed in an out-patient set-up. Diagnostic tests for early detection include brush biopsy, toluidine blue staining, autofluorescence, salivary proteomics, DNA analysis, biomarkers and spectroscopy. This state of the art review critically examines these tests and assesses their value in identifying oral squamous cell carcinoma and its precursor lesions

    Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma

    Get PDF
    The expression of laminin and fibronectin isoforms varies with cellular maturation and differentiation and these differences may well influence cellular processes such as adhesion and motility. The basement membrane (BM) of fetal oral squamous epithelium contains the laminin chains, α2, α3, α5, ÎČ1, ÎČ2, ÎČ3, Îł1 and Îł2. The BM of adult normal oral squamous epithelium comprises the laminin chains, α3, α5, ÎČ1, ÎČ3, Îł1 and Îł2. A re-expression of the laminin α2 and ÎČ2 chains could be shown in adult hyperproliferative, dysplastic and carcinomatous lesions. In dysplasia and oral squamous cell carcinoma (OSCC), multifocal breaks of the BM are present as indicated by laminin chain antibodies. These breaks correlate to malignancy grade in their extent. Moreover, in the invasion front the α3 and Îł2 chain of laminin-5 can immunohistochemically be found outside the BM within the cytoplasm of budding carcinoma cells and in the adjacent stroma. The correlation between the morphological pattern of invasive tumour clusters and a laminin-5 immunostaining in the adjacent stroma may suggest, first, that a laminin-5 deposition outside the BM is an immunohistochemical marker for invasion and second, that OSCC invasion is guided by the laminin-5 matrix. Expression of oncofetal fibronectins (IIICS de novo glycosylated fibronectin and ED-B fibronectin) could be demonstrated throughout the stromal compartment. However, the ED-B fibronectin synthesizing cells (RNA/RNA in situ hybridization) are confined to small stroma areas and to single stroma and inflammatory cells in the invasion front. A correlation of the number of ED-B fibronectin synthesizing cells to malignancy grade could not be seen. ED-B fibronectin mRNA-positive cells seem to be concentrated in areas of fibrous stroma recruitment with a linear alignment of stromal fibro-/myofibroblasts (desmoplasia). Double staining experiments (ED-B fibronectin in situ hybridization and α-smooth muscle actin immunohistochemistry) indicated that the stroma myofibroblasts are a preferential source of ED-B fibronectin. In conclusion, in OSCC, a fetal extracellular matrix conversion is demonstrable. Tumour cells (laminin α2 and ÎČ2 chain) and recruited stromal myofibroblasts (oncofetal ED-B fibronectin) contribute to the fetal extracellular matrix milieu. © 1999 Cancer Research Campaig

    An Integrated Pipeline for the Genome-Wide Analysis of Transcription Factor Binding Sites from ChIP-Seq

    Get PDF
    ChIP-Seq has become the standard method for genome-wide profiling DNA association of transcription factors. To simplify analyzing and interpreting ChIP-Seq data, which typically involves using multiple applications, we describe an integrated, open source, R-based analysis pipeline. The pipeline addresses data input, peak detection, sequence and motif analysis, visualization, and data export, and can readily be extended via other R and Bioconductor packages. Using a standard multicore computer, it can be used with datasets consisting of tens of thousands of enriched regions. We demonstrate its effectiveness on published human ChIP-Seq datasets for FOXA1, ER, CTCF and STAT1, where it detected co-occurring motifs that were consistent with the literature but not detected by other methods. Our pipeline provides the first complete set of Bioconductor tools for sequence and motif analysis of ChIP-Seq and ChIP-chip data

    Biological Convergence of Cancer Signatures

    Get PDF
    Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues, better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular associations were identified with the immune response in different cancer types and conditions that complement the contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design principles and systems-level properties

    Gene coexpression clusters and putative regulatory elements underlying seed storage reserve accumulation in Arabidopsis

    Get PDF
    Abstract Background In Arabidopsis, a large number of genes involved in the accumulation of seed storage reserves during seed development have been characterized, but the relationship of gene expression and regulation underlying this physiological process remains poorly understood. A more holistic view of this molecular interplay will help in the further study of the regulatory mechanisms controlling seed storage compound accumulation. Results We identified gene coexpression networks in the transcriptome of developing Arabidopsis (Arabidopsis thaliana) seeds from the globular to mature embryo stages by analyzing publicly accessible microarray datasets. Genes encoding the known enzymes in the fatty acid biosynthesis pathway were found in one coexpression subnetwork (or cluster), while genes encoding oleosins and seed storage proteins were identified in another subnetwork with a distinct expression profile. In the triacylglycerol assembly pathway, only the genes encoding diacylglycerol acyltransferase 1 (DGAT1) and a putative cytosolic "type 3" DGAT exhibited a similar expression pattern with genes encoding oleosins. We also detected a large number of putative cis-acting regulatory elements in the promoter regions of these genes, and promoter motifs for LEC1 (LEAFY COTYLEDON 1), DOF (DNA-binding-with-One-Finger), GATA, and MYB transcription factors (TF), as well as SORLIP5 (Sequences Over-Represented in Light-Induced Promoters 5), are overrepresented in the promoter regions of fatty acid biosynthetic genes. The conserved CCAAT motifs for B3-domain TFs and binding sites for bZIP (basic-leucine zipper) TFs are enriched in the promoters of genes encoding oleosins and seed storage proteins. Conclusions Genes involved in the accumulation of seed storage reserves are expressed in distinct patterns and regulated by different TFs. The gene coexpression clusters and putative regulatory elements presented here provide a useful resource for further experimental characterization of protein interactions and regulatory networks in this process.</p
    • 

    corecore