128 research outputs found

    Identification of a protein encoded in the EB-viral open reading frame BMRF2

    Get PDF
    Using monospecific rabbit sera against a peptide derived from a potential antigenic region of the Epstein-Barr viral amino acid sequence encoded in the open reading frame BMRF2 we could identify a protein-complex of 53/55 kDa in chemically induced B95-8, P3HR1 and Raji cell lines. This protein could be shown to be membrane-associated, as predicted by previous computer analysis of the secondary structure and hydrophilicity pattern, and may be a member of EBV-induced membrane proteins in lytically infected cells

    LY 294002 inhibits adenosine receptor activation by a mechanism independent of effects on PI-3 kinase or casein kinase II

    Get PDF
    Adenosine reduces both evoked and spontaneous calcium-dependent acetylcholine (ACh) release through a mechanism downstream of calcium entry at amphibian motor nerve endings (Silinsky EM. J Physiol 1984; 346: 243-6). LY 294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), an inhibitor of both phosphoinositide-3 kinase (PI-3 kinase) and casein kinase II, has been reported to increase spontaneous ACh release reflected in miniature endplate potential (MEPP) frequencies independently of intraterminal calcium at the frog neuromuscular junction (Rizzoli SO, Betz WJ. J Neurosci 2002; 22: 10680-). It has been suggested that the increase in MEPP frequency caused by LY 294002, is mediated through an action on synaptotagmins, vesicle associated calcium sensors believed to trigger synaptic vesicle exocytosis. We thus examined the effects of adenosine on MEPP frequencies and evoked ACh release reflected as endplate potentials (EPPs) in order to determine if the presumed calcium-independent ACh release is affected by adenosine. We also wanted to determine if PI-3 kinase or casein kinase II is involved in mediating or modulating the inhibitory effects of adenosine. To these ends, we examined the effects of adenosine in the presence of LY 294002, wortmannin (a highly selective the PI-3 kinase inhibitor), or DRB (5,6-dichlorobenzimidazole riboside, an inhibitor of casein kinase II). LY 294002 reduced the sensitivity of both MEPP frequencies and the nerve-evoked calcium dependent EPPs to adenosine. The occlusive effects of LY 294002 on the actions of adenosine on MEPPs and EPPs were overcome by increasing adenosine concentration. Neither wortmannin nor DRB had any effect on the sensitivity of the EPPs to adenosine indicating that neither PI-3 kinase nor casein kinase II inhibition mediates the reduction in motor-nerve terminal sensitivity to adenosine produced by LY 294002. The results indicate a competitive relationship between LY 294002 and adenosine at A1 receptors at the frog neuromuscular junction. This effect is independent of the previously described effects of LY 294002 on the exocytotic process, and is also independent of PI-3 kinase or casein kinase II

    Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts

    Get PDF
    The phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is frequently deregulated in pancreatic cancers, and is believed to be an important determinant of their biological aggression and drug resistance. NVP-BEZ235 is a novel, dual class I PI3K/mammalian target of rapamycin (mTor) inhibitor undergoing phase I human clinical trials. To simulate clinical testing, the effects of NVP-BEZ235 were studied in five early passage primary pancreatic cancer xenografts, grown orthotopically. These tumours showed activated PKB/Akt, and increased levels of at least one of the receptor tyrosine kinases that are commonly activated in pancreatic cancers. Pharmacodynamic effects were measured following acute single doses, and anticancer effects were determined in separate groups following chronic drug exposure. Acute oral dosing with NVP-BEZ235 strongly suppressed the phosphorylation of PKB/Akt, followed by recovery over 24 h. There was also inhibition of Ser235/236 S6 ribosomal protein and Thr37/46 4E-BP1, consistent with the effects of NVP-BEZ235 as a dual PI3K/mTor inhibitor. Chronic dosing with 45 mg kg−1 of NVP-BEZ235 was well tolerated, and produced significant tumour growth inhibition in three models. These results predict that agents targeting the PI3K/Akt/mTor pathway might have anticancer activity in pancreatic cancer patients, and support the testing of combination studies involving chemotherapy or other molecular targeted agents

    mTORC1-S6K Activation by Endotoxin Contributes to Cytokine Up-Regulation and Early Lethality in Animals

    Get PDF
    Background: mTORC1 (mammalian target of rapamycin complex 1) activation has been demonstrated in response to endotoxin challenge, but the mechanism and significance are unclear. We investigated the effect of mTORC1 suppression in an animal model of endotoxemia and in a cellular model of endotoxin signaling. Methodology/Principal Findings: Mice were treated with the mTORC1 inhibitor rapamycin or vehicle prior to lethal endotoxin challenge. Mortality and cytokine levels were assessed. Cultured macrophage-like cells were challenged with endotoxin with or without inhibitors of various pathways known to be upstream of mTORC1. Activated pathways, including downstream S6K pathway, were assessed by immunoblots. We found that mTORC1-S6K suppression by rapamycin delayed mortality of mice challenged with lethal endotoxin, and was associated with dampened circulating levels of VEGF, IL-1b, IFN-c and IL-5. Furthermore, in vitro cellular studies demonstrated that LPS (lipopolysaccharide) activation of mTORC1-S6K still occurs in the presence of PI3K-Akt inhibition alone, but can be suppressed by concurrent inhibition of PI3K-Akt and MEK-ERK pathways. Conclusions/Significance: We conclude that cellular activation of mTORC1-S6K contributes to cytokine up-regulation an

    Translational Up-Regulation and High-Level Protein Expression from Plasmid Vectors by mTOR Activation via Different Pathways in PC3 and 293T Cells

    Get PDF
    BACKGROUND: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), β-galactosidase (β-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational up-regulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. CONCLUSIONS/SIGNIFICANCE: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium

    Metadherin Mediates Lipopolysaccharide-Induced Migration and Invasion of Breast Cancer Cells

    Get PDF
    BACKGROUND: Breast cancer is the most prevalent cancer in women worldwide and metastatic breast cancer has very poor prognosis. Inflammation has been implicated in migration and metastasis of breast cancer, although the exact molecular mechanism remains elusive. PRINCIPAL FINDINGS: We show that the pro-inflammatory endotoxin Lipopolysaccharide (LPS) upregulates the expression of Metadherin (MTDH), a recently identified oncogene, in a number of breast cancer lines. Stable knockdown of MTDH by shRNA in human breast MDA-MB-231 cells abolishes LPS-induced cell migration and invasion as determined by several in vitro assays. In addition, knockdown of MTDH diminishes Nuclear Factor-kappa B (NF-κB) activation by LPS and inhibited LPS-induced IL-8 and MMP-9 production. CONCLUSIONS: These results strongly suggest that MTDH is a pivotal molecule in inflammation-mediated tumor metastasis. Since NF-κB, IL-8 and MMP-9 play roles in LPS-induced invasion or metastasis, the mechanism of MTDH-promoted invasion and metastasis may be through the activation of NF-κB, IL-8 and MMP-9, also suggesting a role of MTDH in regulating both inflammatory responses and inflammation-associated tumor invasion. These findings indicate that MTDH is involved in inflammation-induced tumor progression, and support that MTDH targeting therapy may hold promising prospects in treating breast cancer

    Phosphoinositide-3 kinase inhibition modulates responses to rhinovirus by mechanisms that are predominantly independent of autophagy

    Get PDF
    Human rhinoviruses (HRV) are a major cause of exacerbations of airways disease. Aspects of cell signalling responses to HRV infection remain unclear, particularly with regard to signalling via PI3K, and the PI3K-dependent pathway, autophagy. We investigated the roles of PI3K and autophagy in the responses of epithelial cells to major and minor group HRV infection. The PI3K inhibitor 3-MA, commonly used to inhibit autophagy, markedly reduced HRV-induced cytokine induction. Further investigation of potential targets of 3-MA and comparison of results using this inhibitor to a panel of general and class I-selective PI3K inhibitors showed that several PI3Ks cooperatively regulate responses to HRV. Targeting by siRNA of the autophagy proteins Beclin-1, Atg7, LC3, alone or in combination, or targeting of the autophagy-specific class III PI3K had at most only modest effects on HRV-induced cell signalling as judged by induction of proinflammatory cytokine production. Our data indicate that PI3K and mTOR are involved in induction of proinflammatory cytokines after HRV infection, and that autophagy has little role in the cytokine response to HRV or control of HRV replication

    Activation of Akt by the Bacterial Inositol Phosphatase, SopB, is Wortmannin Insensitive

    Get PDF
    Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P2 rather than phosphoinositide (3,4,5) P3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway

    Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss

    Get PDF
    Mutations in PINK1 and PARK2 cause autosomal recessive parkinsonism, a neurodegenerative disorder that is characterized by the loss of dopaminergic neurons. To discover potential therapeutic pathways, we identified factors that genetically interact with Drosophila park and Pink1. We found that overexpression of the translation inhibitor Thor (4E-BP) can suppress all of the pathologic phenotypes, including degeneration of dopaminergic neurons in Drosophila. 4E-BP is activated in vivo by the TOR inhibitor rapamycin, which could potently suppress pathology in Pink1 and park mutants. Rapamycin also ameliorated mitochondrial defects in cells from individuals with PARK2 mutations. Recently, 4E-BP was shown to be inhibited by the most common cause of parkinsonism, dominant mutations in LRRK2. We also found that loss of the Drosophila LRRK2 homolog activated 4E-BP and was also able to suppress Pink1 and park pathology. Thus, in conjunction with recent findings, our results suggest that pharmacologic stimulation of 4E-BP activity may represent a viable therapeutic approach for multiple forms of parkinsonism
    • …
    corecore