6,435 research outputs found

    Conceptual Frameworks for Multimodal Social Signal Processing

    Get PDF
    This special issue is about a research area which is developing rapidly. Pentland gave it a name which has become widely used, ‘Social Signal Processing’ (SSP for short), and his phrase provides the title of a European project, SSPnet, which has a brief to consolidate the area. The challenge that Pentland highlighted was understanding the nonlinguistic signals that serve as the basis for “subconscious discussions between humans about relationships, resources, risks, and rewards”. He identified it as an area where computational research had made interesting progress, and could usefully make more

    Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions

    Full text link
    For Anderson localization on the Cayley tree, we study the statistics of various observables as a function of the disorder strength WW and the number NN of generations. We first consider the Landauer transmission TNT_N. In the localized phase, its logarithm follows the traveling wave form ln⁥TN≃ln⁥TNˉ+ln⁥t∗\ln T_N \simeq \bar{\ln T_N} + \ln t^* where (i) the disorder-averaged value moves linearly ln⁥(TN)ˉ≃−NΟloc\bar{\ln (T_N)} \simeq - \frac{N}{\xi_{loc}} and the localization length diverges as Οloc∌(W−Wc)−Μloc\xi_{loc} \sim (W-W_c)^{-\nu_{loc}} with Îœloc=1\nu_{loc}=1 (ii) the variable t∗t^* is a fixed random variable with a power-law tail P∗(t∗)∌1/(t∗)1+ÎČ(W)P^*(t^*) \sim 1/(t^*)^{1+\beta(W)} for large t∗t^* with 0<ÎČ(W)≀1/20<\beta(W) \leq 1/2, so that all integer moments of TNT_N are governed by rare events. In the delocalized phase, the transmission TNT_N remains a finite random variable as N→∞N \to \infty, and we measure near criticality the essential singularity ln⁥(T)Ë‰âˆŒâˆ’âˆŁWc−W∣−ÎșT\bar{\ln (T)} \sim - | W_c-W |^{-\kappa_T} with ÎșT∌0.25\kappa_T \sim 0.25. We then consider the statistical properties of normalized eigenstates, in particular the entropy and the Inverse Participation Ratios (I.P.R.). In the localized phase, the typical entropy diverges as (W−Wc)−ΜS(W-W_c)^{- \nu_S} with ÎœS∌1.5\nu_S \sim 1.5, whereas it grows linearly in NN in the delocalized phase. Finally for the I.P.R., we explain how closely related variables propagate as traveling waves in the delocalized phase. In conclusion, both the localized phase and the delocalized phase are characterized by the traveling wave propagation of some probability distributions, and the Anderson localization/delocalization transition then corresponds to a traveling/non-traveling critical point. Moreover, our results point towards the existence of several exponents Îœ\nu at criticality.Comment: 28 pages, 21 figures, comments welcom

    The VLT-FLAMES Tarantula Survey. VII. A low velocity dispersion for the young massive cluster R136

    Get PDF
    Detailed studies of resolved young massive star clusters are necessary to determine their dynamical state and evaluate the importance of gas expulsion and early cluster evolution. In an effort to gain insight into the dynamical state of the young massive cluster R136 and obtain the first measurement of its velocity dispersion, we analyse multi-epoch spectroscopic data of the inner regions of 30 Doradus in the Large Magellanic Cloud (LMC) obtained as part of the VLT-FLAMES Tarantula Survey. Following a quantitative assessment of the variability, we use the radial velocities of non-variable sources to place an upper limit of 6 km/s on the line-of-sight velocity dispersion of stars within a projected distance of 5 pc from the centre of the cluster. After accounting for the contributions of undetected binaries and measurement errors through Monte Carlo simulations, we conclude that the true velocity dispersion is likely between 4 and 5 km/s given a range of standard assumptions about the binary distribution. This result is consistent with what is expected if the cluster is in virial equilibrium, suggesting that gas expulsion has not altered its dynamics. We find that the velocity dispersion would be ~25 km/s if binaries were not identified and rejected, confirming the importance of the multi-epoch strategy and the risk of interpreting velocity dispersion measurements of unresolved extragalactic young massive clusters.Comment: 18 pages, 7 figures, accepted by A&

    Living IoT: A Flying Wireless Platform on Live Insects

    Full text link
    Sensor networks with devices capable of moving could enable applications ranging from precision irrigation to environmental sensing. Using mechanical drones to move sensors, however, severely limits operation time since flight time is limited by the energy density of current battery technology. We explore an alternative, biology-based solution: integrate sensing, computing and communication functionalities onto live flying insects to create a mobile IoT platform. Such an approach takes advantage of these tiny, highly efficient biological insects which are ubiquitous in many outdoor ecosystems, to essentially provide mobility for free. Doing so however requires addressing key technical challenges of power, size, weight and self-localization in order for the insects to perform location-dependent sensing operations as they carry our IoT payload through the environment. We develop and deploy our platform on bumblebees which includes backscatter communication, low-power self-localization hardware, sensors, and a power source. We show that our platform is capable of sensing, backscattering data at 1 kbps when the insects are back at the hive, and localizing itself up to distances of 80 m from the access points, all within a total weight budget of 102 mg.Comment: Co-primary authors: Vikram Iyer, Rajalakshmi Nandakumar, Anran Wang, In Proceedings of Mobicom. ACM, New York, NY, USA, 15 pages, 201

    Update of the LHC Arc Cryostat Systems Layouts and Integration

    Get PDF
    Since the LHC Conceptual Design report's publication in October 1995 [1], and subsequent evolutions [2], the LHC Arc Cryostat System has undergone recently a number of significant changes, dictated by the natural evolution of the project. Most noteworthy are the recent decisions to route the large number of auxiliary circuits feeding the arc corrector magnets in a separate tube placed inside the cryostat with connections to the magnets every half-cell. Further decisions concern simplification of the baseline vacuum and cryogenic sectorization, the finalization of the design of the arc cryogenic modules and the layout of the arc electrical distribution feedboxes. The most recent features of the highly intricate cryogenics, magnetic, vacuum and electrical distribution systems of the LHC are presente

    VLT/UVES Observations of Interstellar Molecules and Diffuse Bands in the Magellanic Clouds

    Full text link
    We discuss the abundances of interstellar CH, CH+, and CN in the Magellanic Clouds (MC), derived from spectra of 7 SMC and 13 LMC stars obtained (mostly) with the VLT/UVES. CH and/or CH+ are detected toward 3 SMC and 9 LMC stars; CN is detected toward 2 stars. In the MC, the CH/H2 ratio is comparable to that found for diffuse Galactic molecular clouds in some sight lines, but is lower by factors up to 10-15 in others. The abundance of CH in the MC thus appears to depend on local physical conditions -- and not just on metallicity. The observed relationships between the column density of CH and those of CN, CH+, Na I, and K I in the MC are generally consistent with the trends observed in our Galaxy. Using existing data for the rotational populations of H2, we estimate temperatures, radiation field strengths, and local hydrogen densities for the diffuse molecular gas. Densities estimated from N(CH), assuming that CH is produced via steady-state gas-phase reactions, are considerably higher; much better agreement is found by assuming that the CH is made via the (still undetermined) process(es) responsible for the observed CH+. The UVES spectra also reveal absorption from the diffuse interstellar bands at 5780, 5797, and 6284 A in the MC. On average, the three DIBs are weaker by factors of 7-9 (LMC) and about 20 (SMC), compared to those observed in Galactic sight lines with similar N(H I), and by factors of order 2-6, relative to E(B-V), N(Na I), and N(K I). The detection of several of the ``C2 DIBs'', with strengths similar to those in comparable Galactic sight lines, however, indicates that no single, uniform scaling factor (e.g., one related to metallicity) applies to all DIBs (or all sight lines) in the MC. (abstract abridged)Comment: 59 pages, 15 figures, 10 tables; aastex; accepted to ApJ

    The VLT-FLAMES Tarantula Survey XXI. Stellar spin rates of O-type spectroscopic binaries

    Full text link
    The initial distribution of spin rates of massive stars is a fingerprint of their elusive formation process. It also sets a key initial condition for stellar evolution and is thus an important ingredient in stellar population synthesis. So far, most studies have focused on single stars. Most O stars are however found in multiple systems. By establishing the spin-rate distribution of a sizeable sample of O-type spectroscopic binaries and by comparing the distributions of binary sub-populations with one another as well as with that of presumed single stars in the same region, we aim to constrain the initial spin distribution of O stars in binaries, and to identify signatures of the physical mechanisms that affect the evolution of the massive stars spin rates. We use ground-based optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial rotational velocities (\vrot) for components of 114 spectroscopic binaries in 30 Doradus. The \vrot\ values are derived from the full-width at half-maximum (FWHM) of a set of spectral lines, using a FWHM vs. \vrot\ calibration that we derive based on previous line analysis methods applied to single O-type stars in the VFTS sample. The overall \vrot\ distribution of the primary stars resembles that of single O-type stars in the VFTS, featuring a low-velocity peak (at \vrot < 200 kms) and a shoulder at intermediate velocities (200 < \vrot < 300 kms). The distributions of binaries and single stars however differ in two ways. First, the main peak at \vrot \sim100 kms is broader and slightly shifted toward higher spin rates in the binary distribution compared to that of the presumed-single stars. Second, the \vrot distribution of primaries lacks a significant population of stars spinning faster than 300 kms while such a population is clearly present in the single star sample.Comment: 16 pages, 16 figures, paper accepted in Astronomy & Astrophysic
    • 

    corecore