2,273 research outputs found

    Evidence of Raleigh-Hertz surface waves and shear stiffness anomaly in granular media

    Full text link
    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. Under gravity, the non-linear elastic description predicts that acoustic propagation is only possible through surface modes, called Rayleigh-Hertz modes and guided by the index gradient. Here we directly evidence these modes in a controlled laboratory experiment and use them to probe the elastic properties of a granular packing under vanishing confining pressure. The shape and the dispersion relation of both transverse and sagittal modes are compared to the prediction of non-linear elasticity that includes finite size effects. This allows to test the existence of a shear stiffness anomaly close to the jamming transition.Comment: 4 pages 4 figure

    Changes During Recovery from Sodium Deficiency in Atriplex

    Full text link

    The Requirement for Sodium as a Micronutrient by Species Having the C 4

    Full text link

    Spin polarized neutron matter within the Dirac-Brueckner-Hartree-Fock approach

    Get PDF
    The relation between energy and density (known as the nuclear equation of state) plays a major role in a variety of nuclear and astrophysical systems. Spin and isospin asymmetries can have a dramatic impact on the equation of state and possibly alter its stability conditions. An example is the possible manifestation of ferromagnetic instabilities, which would indicate the existence, at a certain density, of a spin-polarized state with lower energy than the unpolarized one. This issue is being discussed extensively in the literature and the conclusions are presently very model dependent. We will report and discuss our recent progress in the study of spin-polarized neutron matter. The approach we take is microscopic and relativistic. The calculated neutron matter properties are derived from realistic nucleon-nucleon interactions. This makes it possible to understand the nature of the EOS properties in terms of specific features of the nuclear force model.Comment: 6 pages, 11 figures, revised/extended calculation

    Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry

    Get PDF
    We have performed precision electrostatic calibrations in the sphere-plane geometry and observed anomalous behavior. Namely, the scaling exponent of the electrostatic signal with distance was found to be smaller than expected on the basis of the pure Coulombian contribution and the residual potential found to be distance dependent. We argue that these findings affect the accuracy of the electrostatic calibrations and invite reanalysis of previous determinations of the Casimir force.Comment: 4 pages, 4 figure

    Academic and Social Outcomes for High‐Risk Youths in Manitoba

    Get PDF
    This study examined academic and social outcomes for high‐risk youths in Manitoba, using longitudinal, population‐based data. All children born in Manitoba in 1984‐1985 who resided in Winnipeg the year they turned 18 were included in analyses (N = 11,703). High risk youths were defined as those involved with child welfare services, living in poverty, and/or having a mother who was a teen at first childbirth. Of youths with one risk factor, 41 to 57 per cent failed to complete high school, and 84 per cent of those with all three risk factors did not complete high school, compared with only 18 per cent of youths with none of the risk factors. Multiple risk factors put youths at an even greater disadvantage. Similar poor outcomes for high risk youths were observed for performance in grade 9, unemployment in early adulthood, and teen births. The findings suggest an intractable cycle of risk and disadvantage with farreaching social and economic implications

    Universal behavior of quantum Green's functions

    Full text link
    We consider a general one-particle Hamiltonian H = - \Delta_r + u(r) defined in a d-dimensional domain. The object of interest is the time-independent Green function G_z(r,r') = . Recently, in one dimension (1D), the Green's function problem was solved explicitly in inverse form, with diagonal elements of Green's function as prescribed variables. The first aim of this paper is to extract from the 1D inverse solution such information about Green's function which cannot be deduced directly from its definition. Among others, this information involves universal, i.e. u(r)-independent, behavior of Green's function close to the domain boundary. The second aim is to extend the inverse formalism to higher dimensions, especially to 3D, and to derive the universal form of Green's function for various shapes of the confining domain boundary.Comment: 46 pages, the shortened version submitted to J. Math. Phy

    The Active Traveling Wave in the Cochlea

    Get PDF
    A sound stimulus entering the inner ear excites a deformation of the basilar membrane which travels along the cochlea towards the apex. It is well established that this wave-like disturbance is amplified by an active system. Recently, it has been proposed that the active system consists of a set of self-tuned critical oscillators which automatically operate at an oscillatory instability. Here, we show how the concepts of a traveling wave and of self-tuned critical oscillators can be combined to describe the nonlinear wave in the cochlea.Comment: 5 pages, 2 figure

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals. Pages 49-52, v17n2, provided courtesy of Howard Gotlieb Archival Research Center

    Bose-Einstein condensation in arbitrarily shaped cavities

    Full text link
    We discuss the phenomenon of Bose-Einstein condensation of an ideal non-relativistic Bose gas in an arbitrarily shaped cavity. The influence of the finite extension of the cavity on all thermodynamical quantities, especially on the critical temperature of the system, is considered. We use two main methods which are shown to be equivalent. The first deals with the partition function as a sum over energy levels and uses a Mellin-Barnes integral representation to extract an asymptotic formula. The second method converts the sum over the energy levels to an integral with a suitable density of states factor obtained from spectral analysis. The application to some simple cavities is discussed.Comment: 10 pages, LaTeX, to appear in Physical Review
    corecore