157 research outputs found

    Are Hylobates lar Extirpated from China?

    Get PDF
    The Nangunhe Nature Reserve in Southwest Yunnan (PRC) has long been presumed to be the last stronghold of lar (or white-handed) gibbons (Hylobates lar) in China and the likely last place of occurrence of Hylobates lar yunnanensis. We conducted a comprehensive survey to assess the status of lar gibbons at Nangunhe. We found no visual or auditory evidence of them still residing at the reserve and therefore tentatively conclude that lar gibbons have become extinct in China. It appears that large-scale destruction of primary forests in the 1960s and 1970s brought about an initial decline in their numbers, and subsequent uncontrolled hunting has resulted in their extirpation. The situation for the six Chinese ape taxa is nothing less than disastrous, with 1 taxon assumed to have become extinct during the last few years, 1 taxon not having been confirmed since the 1980s, and 2 species at the very brink of extinction with only tens of individuals remaining in China

    Latitudinal patterns in stabilizing density dependence of forest communities

    Get PDF
    Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1, 2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4, 5, which increases community stabilization, species coexistence and the diversity of local tree species6, 7. Previous analyses supporting such a latitudinal gradient in CNDD8, 9 have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14, 15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests

    Major axes of variation in tree demography across global forests

    Get PDF
    The future trajectory of global forests is closely intertwined with tree demography, and a major fundamental goal in ecology is to understand the key mechanisms governing spatio‐temporal patterns in tree population dynamics. While previous research has made substantial progress in identifying the mechanisms individually, their relative importance among forests remains unclear mainly due to practical limitations. One approach to overcome these limitations is to group mechanisms according to their shared effects on the variability of tree vital rates and quantify patterns therein. We developed a conceptual and statistical framework (variance partitioning of Bayesian multilevel models) that attributes the variability in tree growth, mortality, and recruitment to variation in species, space, and time, and their interactions – categories we refer to as organising principles (OPs). We applied the framework to data from 21 forest plots covering more than 2.9 million trees of approximately 6500 species. We found that differences among species, the species OP, proved a major source of variability in tree vital rates, explaining 28–33% of demographic variance alone, and 14–17% in interaction with space, totalling 40–43%. Our results support the hypothesis that the range of vital rates is similar across global forests. However, the average variability among species declined with species richness, indicating that diverse forests featured smaller interspecific differences in vital rates. Moreover, decomposing the variance in vital rates into the proposed OPs showed the importance of unexplained variability, which includes individual variation, in tree demography. A focus on how demographic variance is organized in forests can facilitate the construction of more targeted models with clearer expectations of which covariates might drive a vital rate. This study therefore highlights the most promising avenues for future research, both in terms of understanding the relative contributions of groups of mechanisms to forest demography and diversity, and for improving projections of forest ecosystems

    Mycorrhizal feedbacks influence global forest structure and diversity

    Get PDF
    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure

    Response to Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”

    Get PDF
    Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings—(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance—persist even after controlling for other processes that might influence spatial relationships between adults and recruits

    Demography of agile gibbons ( Hylobates agilis )

    Full text link
    Demographic processes and the structure of a population of agile gibbons ( Hylobates agilis ) were investigated over 6 years in the Gunung Palung Reserve, Indonesia. Estimates of population size, density, and biomass revealed a population whose groups were stable in size and composition. Demographic processes place gibbons at risk, however, to short-term changes in their environment. Patterns of survival, fecundity, mortality, and dispersal combined to produce negative rates of growth. In addition, a top-heavy age-class distribution, with adults forming a large fraction of animals, makes it unlikely that this population could recover rapidly from a decline in numbers. Two behavioral factors, territoriality and monogamy, account for the size and stability of gibbon groups. Monogamy imposes limits on group size, while mating patterns and territoriality decrease the impact of sources of high mortality common in other primate species. These relationships underscore the fundamental importance of behavioral influence on demographic processes and social structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44559/1/10764_2005_Article_BF02196129.pd

    Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks

    Get PDF
    Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+. Though broad scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8–50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass (AGB) at spatial grains ranging from 5 to 250m (0.025–6.25 ha), and we evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that the spatial sampling error in AGB is large for standard plot sizes, averaging 46.3% for 0.1 ha subplots and 16.6% for 1 ha subplots. Topographically heterogeneous sites showed positive spatial autocorrelation in AGB at scales of 100m and above; at smaller scales, most study sites showed negative or nonexistent spatial autocorrelation in AGB. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGB leads to a substantial “dilution” bias in calibration parameters, a bias that cannot be removed with current statistical methods. Overall, our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise

    LiDAR-based reference aboveground biomass maps for tropical forests of South Asia and Central Africa

    Get PDF
    Accurate mapping and monitoring of tropical forests aboveground biomass (AGB) is crucial to design effective carbon emission reduction strategies and improving our understanding of Earth’s carbon cycle. However, existing large-scale maps of tropical forest AGB generated through combinations of Earth Observation (EO) and forest inventory data show markedly divergent estimates, even after accounting for reported uncertainties. To address this, a network of high-quality reference data is needed to calibrate and validate mapping algorithms. This study aims to generate reference AGB datasets using field inventory plots and airborne LiDAR data for eight sites in Central Africa and five sites in South Asia, two regions largely underrepresented in global reference AGB datasets. The study provides access to these reference AGB maps, including uncertainty maps, at 100 m and 40 m spatial resolutions covering a total LiDAR footprint of 1,11,650 ha [ranging from 150 to 40,000 ha at site level]. These maps serve as calibration/validation datasets to improve the accuracy and reliability of AGB mapping for current and upcoming EO missions (viz., GEDI, BIOMASS, and NISAR)
    corecore