283 research outputs found

    Two-loop Renormalization for Nonanticommutative N=1/2 Supersymmetric WZ Model

    Full text link
    We study systematically, through two loops, the divergence structure of the supersymmetric WZ model defined on the N=1/2 nonanticommutative superspace. By introducing a spurion field to represent the supersymmetry breaking term F^3 we are able to perform our calculations using conventional supergraph techniques. Divergent terms proportional to F, F^2 and F^3 are produced (the first two are to be expected on general grounds) but no higher-point divergences are found. By adding ab initio F and F^2 terms to the original lagrangian we render the model renormalizable. We determine the renormalization constants and beta functions through two loops, thus making it possible to study the renormalization group flow of the nonanticommutation parameter.Comment: 36 pages, 25 figures, Latex fil

    Multigluon tree amplitudes with a pair of massive fermions

    Full text link
    We consider the calculation of n-point multigluon tree amplitudes with a pair of massive fermions in QCD. We give the explicit transformation rules of this kind of massive fermion-pair amplitudes with respect to different reference momenta and check the correctness of them by SUSY Ward identities. Using these rules and onshell BCFW recursion relation, we calculate the analytic results of several n-point multigluon amplitudes.Comment: 15page

    Supersymmetry in noncommutative superspaces

    Get PDF
    Non commutative superspaces can be introduced as the Moyal-Weyl quantization of a Poisson bracket for classical superfields. Different deformations are studied corresponding to constant background fields in string theory. Supersymmetric and non supersymmetric deformations can be defined, depending on the differential operators used to define the Poisson bracket. Some examples of deformed, 4 dimensional lagrangians are given. For extended superspace (N>1), some new deformations can be defined, with no analogue in the N=1 case.Comment: 23 pages, AMS-LaTeX. Misprints corrected, references adde

    On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes

    Full text link
    We propose a first implementation of the integrand-reduction method for two-loop scattering amplitudes. We show that the residues of the amplitudes on multi-particle cuts are polynomials in the irreducible scalar products involving the loop momenta, and that the reduction of the amplitudes in terms of master integrals can be realized through polynomial fitting of the integrand, without any apriori knowledge of the integral basis. We discuss how the polynomial shapes of the residues determine the basis of master integrals appearing in the final result. We present a four-dimensional constructive algorithm that we apply to planar and non-planar contributions to the 4- and 5-point MHV amplitudes in N=4 SYM. The technique hereby discussed extends the well-established analogous method holding for one-loop amplitudes, and can be considered a preliminary study towards the systematic reduction at the integrand-level of two-loop amplitudes in any gauge theory, suitable for their automated semianalytic evaluation.Comment: 26 pages, 11 figure

    On A Superfield Extension of The ADHM Construction and N=1 Super Instantons

    Full text link
    We give a superfield extension of the ADHM construction for the Euclidean theory obtained by Wick rotation from the Lorentzian four dimensional N=1 super Yang-Mills theory. In particular, we investigate the procedure to guarantee the Wess-Zumino gauge for the superfields obtained by the extended ADHM construction, and show that the known super instanton configurations are correctly obtained.Comment: 22 pages, LaTeX, v2: typos corrected, references adde

    Conformal Quivers and Melting Molecules

    Get PDF
    Quiver quantum mechanics describes the low energy dynamics of a system of wrapped D-branes. It captures several aspects of single and multicentered BPS black hole geometries in four-dimensional N=2\mathcal{N} = 2 supergravity such as the presence of bound states and an exponential growth of microstates. The Coulomb branch of an Abelian three node quiver is obtained by integrating out the massive strings connecting the D-particles. It allows for a scaling regime corresponding to a deep AdS2_2 throat on the gravity side. In this scaling regime, the Coulomb branch is shown to be an SL(2,R)SL(2,\mathbb{R}) invariant multi-particle superconformal quantum mechanics. Finally, we integrate out the strings at finite temperature---rather than in their ground state---and show how the Coulomb branch `melts' into the Higgs branch at high enough temperatures. For scaling solutions the melting occurs for arbitrarily small temperatures, whereas bound states can be metastable and thus long lived. Throughout the paper, we discuss how far the analogy between the quiver model and the gravity picture, particularly within the AdS2_2 throat, can be taken.Comment: 49 pages, 16 figure

    Superconformal mechanics and nonlinear supersymmetry

    Full text link
    We show that a simple change of the classical boson-fermion coupling constant, 2α→2αn2\alpha \to 2\alpha n , n∈Nn\in \N, in the superconformal mechanics model gives rise to a radical change of a symmetry: the modified classical and quantum systems are characterized by the nonlinear superconformal symmetry. It is generated by the four bosonic integrals which form the so(1,2) x u(1) subalgebra, and by the 2(n+1) fermionic integrals constituting the two spin-n/2 so(1,2)-representations and anticommuting for the order n polynomials of the even generators. We find that the modified quantum system with an integer value of the parameter α\alpha is described simultaneously by the two nonlinear superconformal symmetries of the orders relatively shifted in odd number. For the original quantum model with ∣α∣=p|\alpha|=p, p∈Np\in \N, this means the presence of the order 2p nonlinear superconformal symmetry in addition to the osp(2|2) supersymmetry.Comment: 16 pages; misprints corrected, note and ref added, to appear in JHE

    Fundamental Superstrings as Holograms

    Get PDF
    The worldsheet of a macroscopic fundamental superstring in the Green-Schwarz light-cone gauge is viewed as a possible boundary hologram of the near horizon region of a small black string. For toroidally compactified strings, the hologram has global symmetries of AdS_3 \times S^{d-1} \times T^{8-d}, (d =3,..,8), only some of which extend to local conformal symmetries. We construct the bulk string theory in detail for the particular case of d=3. The symmetries of the hologram are correctly reproduced from this exact worldsheet description in the bulk. Moreover, the central charge of the boundary Virasoro algebra obtained from the bulk agrees with the Wald entropy of the associated small black holes. This construction provides an exact CFT description of the near horizon region of small black holes both in Type-II and heterotic string theory arising from multiply wound fundamental superstrings.Comment: 46 pages, JHEP style. v2: Comments, references adde

    Higher-Spin Fermionic Gauge Fields and Their Electromagnetic Coupling

    Get PDF
    We study the electromagnetic coupling of massless higher-spin fermions in flat space. Under the assumptions of locality and Poincare invariance, we employ the BRST-BV cohomological methods to construct consistent parity-preserving off-shell cubic 1-s-s vertices. Consistency and non-triviality of the deformations not only rule out minimal coupling, but also restrict the possible number of derivatives. Our findings are in complete agreement with, but derived in a manner independent from, the light-cone-formulation results of Metsaev and the string-theory-inspired results of Sagnotti-Taronna. We prove that any gauge-algebra-preserving vertex cannot deform the gauge transformations. We also show that in a local theory, without additional dynamical higher-spin gauge fields, the non-abelian vertices are eliminated by the lack of consistent second-order deformations.Comment: 44 pages; references added, minor changes made, to appear in JHE

    The SM and NLO multileg working group: Summary report

    Get PDF
    This report summarizes the activities of the SM and NLO Multileg Working Group of the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 2009.Comment: 169 pages, Report of the SM and NLO Multileg Working Group for the Workshop "Physics at TeV Colliders", Les Houches, France 8-26 June, 200
    • 

    corecore