5,269 research outputs found

    The entropy of the noncommutative acoustic black hole based on generalized uncertainty principle

    Get PDF
    In this paper we investigate statistical entropy of a 3-dimensional rotating acoustic black hole based on generalized uncertainty principle. In our results we obtain an area entropy and a correction term associated with the noncommutative acoustic black hole when λ\lambda introduced in the generalized uncertainty principle takes a specific value. However, in this method, it is not needed to introduce the ultraviolet cut-off and divergences are eliminated. Moreover, the small mass approximation is not necessary in the original brick-wall model.Comment: 9 pages, no figures; version to appear in PLB. arXiv admin note: substantial text overlap with arXiv:1210.773

    On the rigidity of a hard sphere glass near random close packing

    Full text link
    We study theoretically and numerically the microscopic cause of the mechanical stability of hard sphere glasses near their maximum packing. We show that, after coarse-graining over time, the hard sphere interaction can be described by an effective potential which is exactly logarithmic at the random close packing ϕc\phi_c. This allows to define normal modes, and to apply recent results valid for elastic networks: mechanical stability is a non-local property of the packing geometry, and is characterized by some length scale l∗l^* which diverges at ϕc\phi_c [1, 2]. We compute the scaling of the bulk and shear moduli near ϕc\phi_c, and speculate on the possible implications of these results for the glass transition.Comment: 7 pages, 4 figures. Figure 4 had a wrong unit in abscissa, which was correcte

    Heterogeneous Dynamics, Marginal Stability and Soft Modes in Hard Sphere Glasses

    Full text link
    In a recent publication we established an analogy between the free energy of a hard sphere system and the energy of an elastic network [1]. This result enables one to study the free energy landscape of hard spheres, in particular to define normal modes. In this Letter we use these tools to analyze the activated transitions between meta-bassins, both in the aging regime deep in the glass phase and near the glass transition. We observe numerically that structural relaxation occurs mostly along a very small number of nearly-unstable extended modes. This number decays for denser packing and is significantly lowered as the system undergoes the glass transition. This observation supports that structural relaxation and marginal modes share common properties. In particular theoretical results [2, 3] show that these modes extend at least on some length scale l∗∌(ϕc−ϕ)−1/2l^*\sim (\phi_c-\phi)^{-1/2} where ϕc\phi_c corresponds to the maximum packing fraction, i.e. the jamming transition. This prediction is consistent with very recent numerical observations of sheared systems near the jamming threshold [4], where a similar exponent is found, and with the commonly observed growth of the rearranging regions with compression near the glass transition.Comment: 6 pages, improved versio

    Some Properties of Domain Wall Solution in the Randall-Sundrum Model

    Get PDF
    Properties of the domain wall (kink) solution in the 5 dimensional Randall-Sundrum model are examined both {\it analytically} and {\it numerically}. The configuration is derived by the bulk Higgs mechanism. We focus on 1) the convergence property of the solution, 2) the stableness of the solution, 3) the non-singular property of the Riemann curvature, 4) the behaviours of the warp factor and the Higgs field. It is found that the bulk curvature changes the sign around the surface of the wall. We also present some {\it exact} solutions for two simple cases: a) the no potential case, b) the cosmological term dominated case. Both solutions have the (naked) curvature singularity. We can regard the domain wall solution as a singularity resolution of the exact solutions.Comment: Typographical error correction for publication. 16 pages, 4 figure

    Lorentz-violating dimension-five operator contribution to the black body radiation

    Full text link
    We investigate the thermodynamics of a photon gas in an effective field theory model that describes Lorentz violations through dimension-five operators and Horava-Lifshitz theory. We explore the electrodynamics of the model which includes higher order derivatives in the Lagrangian that can modify the dispersion relation for the propagation of the photons. We shall focus on the deformed black body radiation spectrum and modified Stefan-Boltzmann law to address the allowed bounds on the Lorentz-violating parameter.Comment: 8 pages, 6 figures. Version published in PL

    Entangling two superconducting LC coherent modes via a superconducting flux qubit

    Full text link
    Based on a pure solid-state device consisting of two superconducting LC circuits coupled to a superconducting flux qubit, we propose in this paper that the maximally entangled coherent states of the two LC modes can be generated for arbitrary coherent states through flux qubit controls.Comment: 5 pages, 2 figure

    Confining potential in a color dielectric medium with parallel domain walls

    Get PDF
    We study quark confinement in a system of two parallel domain walls interpolating different color dielectric media. We use the phenomenological approach in which the confinement of quarks appears considering the QCD vacuum as a color dielectric medium. We explore this phenomenon in QCD_2, where the confinement of the color flux between the domain walls manifests, in a scenario where two 0-branes (representing external quark and antiquark) are connected by a QCD string. We obtain solutions of the equations of motion via first-order differential equations. We find a new color confining potential that increases monotonically with the distance between the domain walls.Comment: RevTex4, 5 pages, 1 figure; version to appear in Int. J. Mod. Phys.

    Finite-Size-Scaling at the Jamming Transition: Corrections to Scaling and the Correlation Length Critical Exponent

    Full text link
    We carry out a finite size scaling analysis of the jamming transition in frictionless bi-disperse soft core disks in two dimensions. We consider two different jamming protocols: (i) quench from random initial positions, and (ii) quasistatic shearing. By considering the fraction of jammed states as a function of packing fraction for systems with different numbers of particles, we determine the spatial correlation length critical exponent Μ≈1\nu\approx 1, and show that corrections to scaling are crucial for analyzing the data. We show that earlier numerical results yielding Îœ<1\nu<1 are due to the improper neglect of these corrections.Comment: 5 pages, 4 figures -- slightly revised version as accepted for Phys. Rev. E Rapid Communication

    Non-additivity of decoherence rates in superconducting qubits

    Get PDF
    We show that the relaxation and decoherence rates 1/T_1 and 1/T_2 of a qubit coupled to several noise sources are in general not additive, i.e., that the total rates are not the sums of the rates due to each individual noise source. To demonstrate this, we calculate the relaxation and pure dephasing rates 1/T_1 and 1/T_\phi of a superconducting (SC) flux qubit in the Born-Markov approximation in the presence of several circuit impedances Z_i using network graph theory and determine their deviation from additivity (the mixing term). We find that there is no mixing term in 1/T_\phi and that the mixing terms in 1/T_1 and 1/T_2 can be positive or negative, leading to reduced or enhanced relaxation and decoherence times T_1 and T_2. The mixing term due to the circuit inductance L at the qubit transition frequency \omega_{01} is generally of second order in \omega_{01}L/Z_i, but of third order if all impedances Z_i are pure resistances. We calculate T_{1,2} for an example of a SC flux qubit coupled to two impedances.Comment: 5 pages, 2 figure

    The pasta phase within density dependent hadronic models

    Full text link
    In the present paper we investigate the onset of the pasta phase with different parametrisations of the density dependent hadronic model and compare the results with one of the usual parametrisation of the non-linear Walecka model. The influence of the scalar-isovector virtual delta meson is shown. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in beta-equilibrium are studied. We compare our results with restrictions imposed on the the values of the density and pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion data from heavy-ion reactions, and with predictions from spinodal calculations.Comment: 15 pages, 11 figures and 7 table
    • 

    corecore