1,078 research outputs found

    Efficient Global Sensitivity Analysis of Structural Vibration for a Nuclear Reactor System Subject to Nonstationary Loading

    Get PDF
    The structures associated with the nuclear steam supply system (NSSS) of a pressurized water reactor (PWR) include significant epistemic and aleatory uncertainties in the physical parameters, while also being subject to various non-stationary stochastic loading conditions over the life of a nuclear power plant. To understand the influence of these uncertainties on nuclear reactor systems, sensitivity analysis must be performed. This work evaluates computational design of experiment strategies, which execute a nuclear reactor equipment system finite element model to train and verify Gaussian Process (GP) surrogate models. The surrogate models are then used to perform both global and local sensitivity analyses. The significance of the sensitivity analysis for efficient modeling and simulation of nuclear reactor stochastic dynamics is discussed

    Simplified Automatic Fault Detection in Wind Turbine Induction Generators

    Get PDF
    This paper presents a simplified automated fault detection scheme for wind turbine induction generators with rotor electrical asymmetries. Fault indicators developed in previous works have made use of the presence of significant spectral peaks in the upper sidebands of the supply frequency harmonics; however, the specific location of these peaks may shift depending on the wind turbine speed. As wind turbines tend to operate under variable speed conditions, it may be difficult to predict where these fault‐related peaks will occur. To accommodate for variable speeds and resulting shifting frequency peak locations, previous works have introduced methods to identify or track the relevant frequencies, which necessitates an additional set of processing algorithms to locate these fault‐related peaks prior to any fault analysis. In this work, a simplified method is proposed to instead bypass the issue of variable speed (and shifting frequency peaks) by introducing a set of bandpass filters that encompass the ranges in which the peaks are expected to occur. These filters are designed to capture the fault‐related spectral information to train a classifier for automatic fault detection, regardless of the specific location of the peaks. Initial experimental results show that this approach is robust against variable speeds and further shows good generalizability in being able to detect faults at speeds and conditions that were not presented during training. After training and tuning the proposed fault detection system, the system was tested on “unseen” data and yielded a high classification accuracy of 97.4%, demonstrating the efficacy of the proposed approach

    Correlated Isotope Fractionation and Formation of Purple FUN Inclusions

    Get PDF
    Allende coarse-grained inclusions characterized by a distinct purple color and high spinel contents (≀ 50 vol.%) exhibit a higher frequency of FUN isotopic anomalies (≈20%) than the general CAI population (≀6%). We used the ion microprobe to measure Mg, Si, Cr and Fe isotopic compositions of three Purple Spinel-rich Inclusions (PSI = ψ) which are petrographically similar to Type B CAl to investigate: 1) variations in isotopic fractionation within inclusions, including secondary phases; 2) correlated isotopic fractionation; and 3) excess ^(26)Mg

    Resolving domination in graphs

    Get PDF
    summary:For an ordered set W={w1,w2,⋯ ,wk}W =\lbrace w_1, w_2, \cdots , w_k\rbrace of vertices and a vertex vv in a connected graph GG, the (metric) representation of vv with respect to WW is the kk-vector r(v∣W)=(d(v,w1),d(v,w2),⋯ ,d(v,wk))r(v|W) = (d(v, w_1),d(v, w_2) ,\cdots , d(v, w_k)), where d(x,y)d(x,y) represents the distance between the vertices xx and yy. The set WW is a resolving set for GG if distinct vertices of GG have distinct representations with respect to WW. A resolving set of minimum cardinality is called a minimum resolving set or a basis and the cardinality of a basis for GG is its dimension dim⁡G\dim G. A set SS of vertices in GG is a dominating set for GG if every vertex of GG that is not in SS is adjacent to some vertex of SS. The minimum cardinality of a dominating set is the domination number γ(G)\gamma (G). A set of vertices of a graph GG that is both resolving and dominating is a resolving dominating set. The minimum cardinality of a resolving dominating set is called the resolving domination number γr(G)\gamma _r(G). In this paper, we investigate the relationship among these three parameters

    Powerful alliances in graphs

    Get PDF
    AbstractFor a graph G=(V,E), a non-empty set S⊆V is a defensive alliance if for every vertex v in S, v has at most one more neighbor in V−S than it has in S, and S is an offensive alliance if for every v∈V−S that has a neighbor in S, v has more neighbors in S than in V−S. A powerful alliance is both defensive and offensive. We initiate the study of powerful alliances in graphs

    Fast Fourier Optimization: Sparsity Matters

    Full text link
    Many interesting and fundamentally practical optimization problems, ranging from optics, to signal processing, to radar and acoustics, involve constraints on the Fourier transform of a function. It is well-known that the {\em fast Fourier transform} (fft) is a recursive algorithm that can dramatically improve the efficiency for computing the discrete Fourier transform. However, because it is recursive, it is difficult to embed into a linear optimization problem. In this paper, we explain the main idea behind the fast Fourier transform and show how to adapt it in such a manner as to make it encodable as constraints in an optimization problem. We demonstrate a real-world problem from the field of high-contrast imaging. On this problem, dramatic improvements are translated to an ability to solve problems with a much finer grid of discretized points. As we shall show, in general, the "fast Fourier" version of the optimization constraints produces a larger but sparser constraint matrix and therefore one can think of the fast Fourier transform as a method of sparsifying the constraints in an optimization problem, which is usually a good thing.Comment: 16 pages, 8 figure

    Hierarchical search strategy for the detection of gravitational waves from coalescing binaries: Extension to post-Newtonian wave forms

    Get PDF
    The detection of gravitational waves from coalescing compact binaries would be a computationally intensive process if a single bank of template wave forms (i.e., a one step search) is used. In an earlier paper we had presented a detection strategy, called a two step search}, that utilizes a hierarchy of template banks. It was shown that in the simple case of a family of Newtonian signals, an on-line two step search was about 8 times faster than an on-line one step search (for initial LIGO). In this paper we extend the two step search to the more realistic case of zero spin 1.5 post-Newtonian wave forms. We also present formulas for detection and false alarm probabilities which take statistical correlations into account. We find that for the case of a 1.5 post-Newtonian family of templates and signals, an on-line two step search requires about 1/21 the computing power that would be required for the corresponding on-line one step search. This reduction is achieved when signals having strength S = 10.34 are required to be detected with a probability of 0.95, at an average of one false event per year, and the noise power spectral density used is that of advanced LIGO. For initial LIGO, the reduction achieved in computing power is about 1/27 for S = 9.98 and the same probabilities for detection and false alarm as above.Comment: 30 page RevTeX file and 17 figures (postscript). Submitted to PRD Feb 21, 199

    Approximate Quantum Fourier Transform and Decoherence

    Get PDF
    We discuss the advantages of using the approximate quantum Fourier transform (AQFT) in algorithms which involve periodicity estimations. We analyse quantum networks performing AQFT in the presence of decoherence and show that extensive approximations can be made before the accuracy of AQFT (as compared with regular quantum Fourier transform) is compromised. We show that for some computations an approximation may imply a better performance.Comment: 14 pages, 10 fig. (8 *.eps files). More information on http://eve.physics.ox.ac.uk/QChome.html http://www.physics.helsinki.fi/~kasuomin http://www.physics.helsinki.fi/~kira/group.htm
    • 

    corecore