1,487 research outputs found

    Towards Realistic String Vacua From Branes At Singularities

    Get PDF
    We report on progress towards constructing string models incorporating both realistic D-brane matter content and moduli stabilisation with dynamical low-scale supersymmetry breaking. The general framework is that of local D-brane models embedded into the LARGE volume approach to moduli stabilisation. We review quiver theories on del Pezzo nn (dPndP_n) singularities including both D3 and D7 branes. We provide supersymmetric examples with three quark/lepton families and the gauge symmetries of the Standard, Left-Right Symmetric, Pati-Salam and Trinification models, without unwanted chiral exotics. We describe how the singularity structure leads to family symmetries governing the Yukawa couplings which may give mass hierarchies among the different generations. We outline how these models can be embedded into compact Calabi-Yau compactifications with LARGE volume moduli stabilisation, and state the minimal conditions for this to be possible. We study the general structure of soft supersymmetry breaking. At the singularity all leading order contributions to the soft terms (both gravity- and anomaly-mediation) vanish. We enumerate subleading contributions and estimate their magnitude. We also describe model-independent physical implications of this scenario. These include the masses of anomalous and non-anomalous U(1)'s and the generic existence of a new hyperweak force under which leptons and/or quarks could be charged. We propose that such a gauge boson could be responsible for the ghost muon anomaly recently found at the Tevatron's CDF detector.Comment: 40 pages, 10 figure

    Scale Dependence of Twist-3 Quark-Gluon Operators for Single Spin Asymmetries

    Full text link
    We derive the scale dependence of twist-3 quark-gluon operators, or ETQS matrix elements, at one-loop. These operators are used to factorize transverse single spin asymmetries, which are studied intensively both in experiment and theory. The scale dependence of two special cases are particularly interesting. One is of soft-gluon-pole matrix elements, another is of soft-quark-pole matrix elements. From our results the evolutions in the two cases can be obtained. A comparison with existing results of soft-gluon-pole matrix elements is made.Comment: typo in Eq.(10) corrected, references adde

    Limitations and challenges of EIT-based monitoring of stroke volume and pulmonary artery pressure.

    Get PDF
    Electrical impedance tomography (EIT) shows potential for radiation-free and noninvasive hemodynamic monitoring. However, many factors degrade the accuracy and repeatability of these measurements. Our goal is to estimate the impact of this variability on the EIT-based monitoring of two important central hemodynamic parameters: stroke volume (SV) and pulmonary artery pressure (PAP). We performed simulations on a 4D ([Formula: see text]) bioimpedance model of a human volunteer to study the influence of four potential confounding factors (electrode belt displacement, electrode detachment, changes in hematocrit and lung air volume) on the performance of EIT-based SV and PAP estimation. Results were used to estimate how these factors affect the EIT measures of either absolute values or relative changes (i.e. trending). Our findings reveal that the absolute measurement of SV via EIT is very sensitive to electrode belt displacements and lung conductivity changes. Nonetheless, the trending ability of SV EIT might be a promising alternative. The timing-based measurement of PAP is more robust to lung conductivity changes but sensitive to longitudinal belt displacements at severe hypertensive levels and to rotational displacements (independent of the PAP level). We identify and quantify the challenges of EIT-based SV and PAP monitoring. Absolute SV via EIT is challenging, but trending is feasible, while both the absolute and trending of PAP via EIT are mostly impaired by belt displacements

    Transverse Momentum Dependent Light-Cone Wave Function of B-Meson and Relation to the Momentum Integrated One

    Full text link
    A direct generalization of the transverse momentum integrated(TMI) light-cone wave function to define a transverse momentum dependent(TMD) light-cone wave function will cause light-cone singularities and they spoil TMD factorization. We motivate a definition in which the light-cone singularities are regularized with non-light like Wilson lines. The defined TMD light-cone wave function has some interesting relations to the corresponding TMI one. When the transverse momentum is very large, the TMD light-cone wave function is determined perturbatively in term of the TMI one. In the impact bb-space with a small bb, the TMD light-cone wave function can be factorized in terms of the TMI one. In this letter we study these relations. By-products of our study are the renormalization evolution of the TMI light-cone wave function and the Collins-Soper equation of the TMD light-cone wave function, the later will be useful for resumming Sudakov logarithms.Comment: Minor change in text, 7 pages, two figure

    Resummation of Large Logarithms in γπ0γ\gamma^* \pi^0 \to \gamma

    Full text link
    In the collinear factorization of the form factor for the transition γπ0γ\gamma^* \pi^0 \to \gamma the hard part contains double log terms as ln2x\ln^2 x with xx as the momentum fraction of partons from 0 to 1. A simple exponentiation for resummation leads to divergent results. We study the resummation of these ln2x\ln^2 x terms. We show that the ln2x\ln^2 x terms come partly from the light-cone wave function(LCWF) and partly from the form factor. We introduce a jet factor to factorize the ln2x\ln^2 x term in the form factor. To handel the ln2x\ln^2 x terms from the LCWF we introduce a nonstandard light-cone wave function(NLCWF) with the gauge links off the light-cone direction. An interesting relation between two wave function is found. With the introduced NLCWF and the jet factor we can re-factorize the form factor and obtain a new hard part which does not contain terms with ln2x\ln^2 x. Beside the renormalization scale μ\mu the introduce NLCWF and jet factor have extra scales to characterize their xx-behaviors. Using the evolutions of the extra scales and the relation we can do the resummation perturbatively in sense that the LCWF is the only nonpertubative object in the resumed formula. Our results with some models of LCWF show that there is a significant difference between numerical predictions with the resummation and that without the resummation, and the resummed predictions can describe the experimental data.Comment: one reference adde

    Regge Field Theory in zero transverse dimensions: loops versus "net" diagrams

    Full text link
    Toy models of interacting Pomerons with triple and quaternary Pomeron vertices in zero transverse dimension are investigated. Numerical solutions for eigenvalues and eigenfunctions of the corresponding Hamiltonians are obtained, providing the quantum solution for the scattering amplitude in both models. The equations of motion for the Lagrangians of the theories are also considered and the classical solutions of the equations are found. Full two-point Green functions ("effective" Pomeron propagator) and amplitude of diffractive dissociation process are calculated in the framework of RFT-0 approach. The importance of the loops contribution in the amplitude at different values of the model parameters is discussed as well as the difference between the models with and without quaternary Pomeron vertex.Comment: 34 pages, 36 figure

    Thermal Equilibration and Expansion in Nucleus-Nucleus Collision at the AGS

    Full text link
    The rather complete data set of hadron yields from central Si + A collisions at the Brookhaven AGS is used to test whether the system at freeze-out is in thermal and hadro-chemical equilibrium. Rapidity and transverse momentum distributions are discussed with regards to the information they provide on hydrodynamic flow.Comment: 11 pages + 2 uuencoded figure

    Decoherence scenarios from micro- to macroscopic superpositions

    Full text link
    Environment induced decoherence entails the absence of quantum interference phenomena from the macroworld. The loss of coherence between superposed wave packets depends on their separation. The precise temporal course depends on the relative size of the time scales for decoherence and other processes taking place in the open system and its environment. We use the exactly solvable model of an harmonic oscillator coupled to a bath of oscillators to illustrate various decoherence scenarios: These range from exponential golden-rule decay for microscopic superpositions, system-specific decay for larger separations in a crossover regime, and finally universal interaction-dominated decoherence for ever more macroscopic superpositions.Comment: 11 pages, 7 figures, accompanying paper to quant-ph/020412

    Thermal and Hadrochemical Equilibration in Nucleus-Nucleus Collisions at the SPS

    Full text link
    The currently available set of hadron abundances at the SPS for central S+Au(W,Pb) collisions is compared to predictions from a scenario assuming local thermal and hadrochemical equilibrium. The data are consistent with a freeze-out temperature T = 160-170 MeV. Spectra are consistent with this temperature range and a moderate transverse expansion. The freeze-out points at the AGS and SPS are found to be close to the phase boundary between a hadron gas and an ideal quark-gluon phase.Comment: 14 pages + 3 figures. Paper replaced with version accepted for publication in Phys. Lett.
    corecore