956 research outputs found
Absolute spacetime: the twentieth century ether
All gauge theories need ``something fixed'' even as ``something changes.''
Underlying the implementation of these ideas all major physical theories make
indispensable use of an elaborately designed spacetime model as the ``something
fixed,'' i.e., absolute. This model must provide at least the following
sequence of structures: point set, topological space, smooth manifold,
geometric manifold, base for various bundles. The ``fine structure'' of
spacetime inherent in this sequence is of course empirically unobservable
directly, certainly when quantum mechanics is taken into account. This issue is
at the basis of the difficulties in quantizing general relativity and has been
approached in many different ways. Here we review an approach taking into
account the non-Boolean properties of quantum logic when forming a spacetime
model. Finally, we recall how the fundamental gauge of diffeomorphisms (the
issue of general covariance vs coordinate conditions) raised deep conceptual
problems for Einstein in his early development of general relativity. This is
clearly illustrated in the notorious ``hole'' argument. This scenario, which
does not seem to be widely known to practicing relativists, is nevertheless
still interesting in terms of its impact for fundamental gauge issues.Comment: Contribution to Proceedings of Mexico Meeting on Gauge Theories of
Gravity in honor of Friedrich Heh
Is Quantum Mechanics Compatible with a Deterministic Universe? Two Interpretations of Quantum Probabilities
Two problems will be considered: the question of hidden parameters and the
problem of Kolmogorovity of quantum probabilities. Both of them will be
analyzed from the point of view of two distinct understandings of quantum
mechanical probabilities. Our analysis will be focused, as a particular
example, on the Aspect-type EPR experiment. It will be shown that the quantum
mechanical probabilities appearing in this experiment can be consistently
understood as conditional probabilities without any paradoxical consequences.
Therefore, nothing implies in the Aspect experiment that quantum theory is
incompatible with a deterministic universe.Comment: REVISED VERSION! ONLY SMALL CHANGES IN THE TEXT! compressed and
uuencoded postscript, a uuencoded version of a demo program file (epr.exe for
DOS) is attached as a "Figure
Exotic Smoothness and Physics
The essential role played by differentiable structures in physics is reviewed
in light of recent mathematical discoveries that topologically trivial
space-time models, especially the simplest one, , possess a rich
multiplicity of such structures, no two of which are diffeomorphic to each
other and thus to the standard one. This means that physics has available to it
a new panoply of structures available for space-time models. These can be
thought of as source of new global, but not properly topological, features.
This paper reviews some background differential topology together with a
discussion of the role which a differentiable structure necessarily plays in
the statement of any physical theory, recalling that diffeomorphisms are at the
heart of the principle of general relativity. Some of the history of the
discovery of exotic, i.e., non-standard, differentiable structures is reviewed.
Some new results suggesting the spatial localization of such exotic structures
are described and speculations are made on the possible opportunities that such
structures present for the further development of physical theories.Comment: 13 pages, LaTe
Localized Exotic Smoothness
Gompf's end-sum techniques are used to establish the existence of an infinity
of non-diffeomorphic manifolds, all having the same trivial
topology, but for which the exotic differentiable structure is confined to a
region which is spatially limited. Thus, the smoothness is standard outside of
a region which is topologically (but not smoothly) ,
where is the compact three ball. The exterior of this region is
diffeomorphic to standard . In a
space-time diagram, the confined exoticness sweeps out a world tube which, it
is conjectured, might act as a source for certain non-standard solutions to the
Einstein equations. It is shown that smooth Lorentz signature metrics can be
globally continued from ones given on appropriately defined regions, including
the exterior (standard) region. Similar constructs are provided for the
topology, of the Kruskal form of the Schwarzschild
solution. This leads to conjectures on the existence of Einstein metrics which
are externally identical to standard black hole ones, but none of which can be
globally diffeomorphic to such standard objects. Certain aspects of the Cauchy
problem are also discussed in terms of \models which are
``half-standard'', say for all but for which cannot be globally
smooth.Comment: 8 pages plus 6 figures, available on request, IASSNS-HEP-94/2
The Origin of Structures in Generalized Gravity
In a class of generalized gravity theories with general couplings between the
scalar field and the scalar curvature in the Lagrangian, we can describe the
quantum generation and the classical evolution of both the scalar and tensor
structures in a simple and unified manner. An accelerated expansion phase based
on the generalized gravity in the early universe drives microscopic quantum
fluctuations inside a causal domain to expand into macroscopic ripples in the
spacetime metric on scales larger than the local horizon. Following their
generation from quantum fluctuations, the ripples in the metric spend a long
period outside the causal domain. During this phase their evolution is
characterized by their conserved amplitudes. The evolution of these
fluctuations may lead to the observed large scale structures of the universe
and anisotropies in the cosmic microwave background radiation.Comment: 5 pages, latex, no figur
Protein-decorated microbubbles for ultrasound-mediated cell surface manipulation
Delivering cargo to the cell membranes of specific cell types in the body is a major challenge for a range of treatments, including immunotherapy. This study investigates employing protein-decorated microbubbles (MBs) and ultrasound (US) to “tag” cellular membranes of interest with a specific protein. Phospholipid-coated MBs were produced and functionalized with a model protein using a metallochelating complex through an NTA(Ni) and histidine residue interaction. Successful “tagging” of the cellular membrane was observed using microscopy in adherent cells and was promoted by US exposure. Further modification of the MB surface to enable selective binding to target cells was then achieved by functionalizing the MBs with a targeting protein (transferrin) that specifically binds to a receptor on the target cell membrane. Attachment and subsequent transfer of material from MBs functionalized with transferrin to the target cells significantly increased, even in the absence of US. This work demonstrates the potential of these MBs as a platform for the noninvasive delivery of proteins to the surface of specific cell types
Black Holes with a Massive Dilaton
The modifications of dilaton black holes which result when the dilaton
acquires a mass are investigated. We derive some general constraints on the
number of horizons of the black hole and argue that if the product of the black
hole charge and the dilaton mass satisfies then the black
hole has only one horizon. We also argue that for there may exist
solutions with three horizons and we discuss the causal structure of such
solutions. We also investigate the possible structures of extremal solutions
and the related problem of two-dimensional dilaton gravity with a massive
dilaton.Comment: 36 pages with 5 figures (as uuencoded compressed tar file) (revised
version has one major change in bound on mass for extremal solution and minor
typos fixed), harvma
Geometrization of the electro-weak model bosonic component
In this work we develop a geometrical unification theory for gravity and the
electro-weak model in a Kaluza-Klein approach; in particular, from the
curvature dimensional reduction Einstein-Yang-Mills action is obtained. We
consider two possible space-time manifolds: 1)
where isospin doublets are identified with spinors; 2) in which both quarks and leptons doublets can be recast
into the same spinor, such that the equal number of quark generations and
leptonic families is explained. Finally a self-interacting complex scalar field
is introduced to reproduce the spontaneous symmetry breaking mechanism; in this
respect, at the end we get an Higgs fields whose two components have got
opposite hypercharges.Comment: 15 pages, no figures, to appear on Int. Jour. of Theor. Phy
Scalar GW detection with a hollow spherical antenna
We study the response and cross sections for the absorption of GW energy in a
Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow
sphere.Comment: latex file, 9 page
A time-space varying speed of light and the Hubble Law in static Universe
We consider a hypothetical possibility of the variability of light velocity
with time and position in space which is derived from two natural postulates.
For the consistent consideration of such variability we generalize
translational transformations of the Theory of Relativity. The formulae of
transformations between two rest observers within one inertial system are
obtained. It is shown that equality of velocities of two particles is as
relative a statement as simultaneity of two events is. We obtain the expression
for the redshift of radiation of a rest source which formally reproduces the
Hubble Law. Possible experimental implications of the theory are discussed.Comment: 7 page
- …