109 research outputs found

    Evolution of self-organized division of labor in a response threshold model

    Get PDF
    Division of labor in social insects is determinant to their ecological success. Recent models emphasize that division of labor is an emergent property of the interactions among nestmates obeying to simple behavioral rules. However, the role of evolution in shaping these rules has been largely neglected. Here, we investigate a model that integrates the perspectives of self-organization and evolution. Our point of departure is the response threshold model, where we allow thresholds to evolve. We ask whether the thresholds will evolve to a state where division of labor emerges in a form that fits the needs of the colony. We find that division of labor can indeed evolve through the evolutionary branching of thresholds, leading to workers that differ in their tendency to take on a given task. However, the conditions under which division of labor evolves depend on the strength of selection on the two fitness components considered: amount of work performed and on worker distribution over tasks. When selection is strongest on the amount of work performed, division of labor evolves if switching tasks is costly. When selection is strongest on worker distribution, division of labor is less likely to evolve. Furthermore, we show that a biased distribution (like 3:1) of workers over tasks is not easily achievable by a threshold mechanism, even under strong selection. Contrary to expectation, multiple matings of colony foundresses impede the evolution of specialization. Overall, our model sheds light on the importance of considering the interaction between specific mechanisms and ecological requirements to better understand the evolutionary scenarios that lead to division of labor in complex systems

    Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>microRNAs (miRNA) are short, endogenous transcripts that negatively regulate the expression of specific mRNA targets. miRNAs are found both in tissues and body fluids such as plasma. A major perspective for the use of miRNAs in the clinical setting is as diagnostic plasma markers for neoplasia. While miRNAs are abundant in tissues, they are often scarce in plasma. For quantification of miRNA in plasma it is therefore of importance to use a platform with high sensitivity and linear performance in the low concentration range. This motivated us to evaluate the performance of three commonly used commercial miRNA quantification platforms: GeneChip miRNA 2.0 Array, miRCURY Ready-to-Use PCR, Human panel I+II V1.M, and TaqMan Human MicroRNA Array v3.0.</p> <p>Results</p> <p>Using synthetic miRNA samples and plasma RNA samples spiked with different ratios of 174 synthetic miRNAs we assessed the performance characteristics reproducibility, recovery, specificity, sensitivity and linearity. It was found that while the qRT-PCR based platforms were sufficiently sensitive to reproducibly detect miRNAs at the abundance levels found in human plasma, the array based platform was not. At high miRNA levels both qRT-PCR based platforms performed well in terms of specificity, reproducibility and recovery. At low miRNA levels, as in plasma, the miRCURY platform showed better sensitivity and linearity than the TaqMan platform.</p> <p>Conclusion</p> <p>For profiling clinical samples with low miRNA abundance, such as plasma samples, the miRCURY platform with its better sensitivity and linearity would probably be superior.</p

    Implications of Behavioral Architecture for the Evolution of Self-Organized Division of Labor

    Get PDF
    Division of labor has been studied separately from a proximate self-organization and an ultimate evolutionary perspective. We aim to bring together these two perspectives. So far this has been done by choosing a behavioral mechanism a priori and considering the evolution of the properties of this mechanism. Here we use artificial neural networks to allow for a more open architecture. We study whether emergent division of labor can evolve in two different network architectures; a simple feedforward network, and a more complex network that includes the possibility of self-feedback from previous experiences. We focus on two aspects of division of labor; worker specialization and the ratio of work performed for each task. Colony fitness is maximized by both reducing idleness and achieving a predefined optimal work ratio. Our results indicate that architectural constraints play an important role for the outcome of evolution. With the simplest network, only genetically determined specialization is possible. This imposes several limitations on worker specialization. Moreover, in order to minimize idleness, networks evolve a biased work ratio, even when an unbiased work ratio would be optimal. By adding self-feedback to the network we increase the network's flexibility and worker specialization evolves under a wider parameter range. Optimal work ratios are more easily achieved with the self-feedback network, but still provide a challenge when combined with worker specialization

    Neural computations underpinning the strategic management of influence in advice giving

    Get PDF
    Research on social influence has focused mainly on the target of influence (e.g., consumer and voter); thus, the cognitive and neurobiological underpinnings of the source of the influence (e.g., politicians and salesmen) remain unknown. Here, in a three-sided advice-giving game, two advisers competed to influence a client by modulating their own confidence in their advice about which lottery the client should choose. We report that advisers’ strategy depends on their level of influence on the client and their merit relative to one another. Moreover, blood-oxygenation-level-dependent (BOLD) signal in the temporo-parietal junction is modulated by adviser’s current level of influence on the client, and relative merit prediction error affects activity in medial-prefrontal cortex. Both types of social information modulate ventral striatum response. By demonstrating what happens in our mind and brain when we try to influence others, these results begin to explain the biological mechanisms that shape inter-individual differences in social conduct

    Impact of intracellular ion channels on cancer development and progression

    Get PDF

    Early signaling components in ultraviolet-B responses: Distinct roles for different reactive oxygen species and nitric oxide

    No full text
    The nature and origin of the reactive oxygen species (ROS) involved in the early part of Ultraviolet-B (UV-B)-induced signaling pathways were investigated in Arabidopsis thaliana using a range of enzyme inhibitors and free radical scavengers. The increase in PR-1 transcript and decrease in Lhcb transcript in response to UV-B exposure was shown to be mediated through pathways involving hydrogen peroxide (H₂O₂) derived from superoxide (O₂⁻). In contrast, the up-regulation of PDF1.2 transcript was mediated through a pathway involving O₂⁻ directly. The origins of the ROS were also shown to be distinct and to involve NADPH oxidase and peroxidase(s). The up-regulation of Chs by UV-B was not affected by ROS scavengers, but was reduced by inhibitors of nitric oxide synthase (NOS) or NO scavengers. Together these results suggest that UV-B exposure leads to the generation of ROS, from multiple sources, and NO, through increased NOS activity, giving rise to parallel signaling pathways mediating responses of specific genes to UV-B radiation

    Early signaling components in ultraviolet-B responses: Distinct roles for different reactive oxygen species and nitric oxide

    Get PDF
    The nature and origin of the reactive oxygen species (ROS) involved in the early part of Ultraviolet-B (UV-B)-induced signaling pathways were investigated in Arabidopsis thaliana using a range of enzyme inhibitors and free radical scavengers. The increase in PR-1 transcript and decrease in Lhcb transcript in response to UV-B exposure was shown to be mediated through pathways involving hydrogen peroxide (H₂O₂) derived from superoxide (O₂⁻). In contrast, the up-regulation of PDF1.2 transcript was mediated through a pathway involving O₂⁻ directly. The origins of the ROS were also shown to be distinct and to involve NADPH oxidase and peroxidase(s). The up-regulation of Chs by UV-B was not affected by ROS scavengers, but was reduced by inhibitors of nitric oxide synthase (NOS) or NO scavengers. Together these results suggest that UV-B exposure leads to the generation of ROS, from multiple sources, and NO, through increased NOS activity, giving rise to parallel signaling pathways mediating responses of specific genes to UV-B radiation
    corecore